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Abstract

Traditional serial approaches to improving the computational capacity of computers have be-
come bounded by physical constraints such as the speed of light and quantum affects. Parallelism
is now the dominant paradigm in computer architecture, and increasing parallelism is now the pri-
mary method of improving the computational performance of computer systems. Interconnection
networks are key to the performance of these systems as they mediate communication between
the components. Interconnection networks are emerging more generally though, as a universal
solution to system-level communication in digital systems. Consequently, optimisation of their
performance is becoming increasingly critical.

The design of many interconnection networks are based around regular network topologies, but
it is now becoming more important to consider networks where the structure has an irregular or
non-uniform construction. Irregular structures may be produced by hardware faults or dynamic
changes. There are also many networks that are inherently irregular, such as the Internet. In
such cases, the routing algorithm, which is the way messages are directed from a source to a
destination, must be able to perform effectively despite the irregularity. In particular, universal
routing algorithms are designed to perform well, independent of the network topology.

This project aims to give a comprehensive overview of the current approaches to routing in
irregular networks. It will do this by presenting a detailed theoretical and empirical analysis of
the current best performing universal routing algorithms, specifically those representing the most
recent development in the use of virtual channels and turn prohibition. The empirical analysis
is based on experimentation with a software simulation tool developed for this project. It will
evaluate the performance of algorithms on a range of topologies from regular meshes to random
irregular classes with properties such as clustering.

The following points outline the main achievements of this project.

1. Implementing a complex network simulation tool to evaluate the performance of different
routing algorithms on different topologies under various network parameters.

2. Implementing two of the best-performing universal routing algorithms and identifying
errors in their descriptions and several weaknesses in their design.

3. Application of the dual graph representation in the Segment-Based routing algorithm to
calculate shortest paths with prohibited turns.

4. Proposals of an enhancements to Segment-Based routing’s algorithm for the discovery
of segments in irregular graphs, and to LASH-TOR’s method of balancing load between
virtual layers.

5. Conducting a detailed empirical investigation into the behaviour and performance of the
Segment-Based and LASH-TOR routing algorithms. Novel aspects of this were comparison
on regular topologies with the topology-specific Dimension-Order routing algorithm and
comparison with random graph classes possessing particular properties.
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Chapter 1.

Motivation and Background

Routing is fundamental to the performance of many digital systems we rely on today. Its
importance is motivated by two key areas: the use of parallel architectures in computing and of
interconnection networks in digital systems, both of which are rapidly developing and becoming
widespread in their applications. Interconnection networks have long been used in electronic
systems such as telephone networks and more recently the Internet. With the rapid evolution of
parallel computing architectures from desktops to supercomputers, their integral importance and
wide ranging applications are becoming increasingly apparent.

The purpose of this initial chapter is to establish the significance of parallel systems in modern
digital systems, and the consequent importance of interconnection networks as the basis for these
systems. It will then introduce the fundamental aspects of interconnection networks: topology,
routing and flow control, which are key to this project.

1.1. Convergence Towards Parallel Architectures

Computers are an essential part of our society. They exist in a multitude of forms, completing a
wide range of tasks; from embedded applications such as GPS, to supercomputers used to predict
future weather patterns. Their most pervasive use in our lives today is through the communication
infrastructure that can be created with them, most notably the Internet. The speed of their
development has been dramatic; the first machines resembling what today would be considered a
computer emerged in the mid-20™ century (1940-1945). These occupied whole rooms, consuming
huge amounts of power and provided only a fraction of the computational performance of a single
modern desktop computer. We now find computers affecting most aspects of our lives.

The development of digital electronics, particularly the fabrication of microprocessors, has
allowed more and more processing functionality to be included on a single integrated circuit (IC);
where electronic components are manufactured on a single substrate of semiconductor material.
Eventually in the 1970s, due to improvements in very large scale integration (VLSI) techniques,
the entire computer’s central processing unit (CPU) could be integrated into a single chip, which
greatly reduced the costs involved in building computer systems. Since the 1970s, the increasing
performance of processors has been known generally to follow Moore’s Law [29] which states
that the number of transistors that can be placed inexpensively on an IC increases exponentially,
doubling every two years. This law has been seen to hold (though arguably through self-fulfilling
prophecy) since the 1970s, until the present day where VLSI processes can fabricate microchips
consisting of billions of transistors, achieving huge clock frequencies. This speed-up has been
primarily driven by bit-level parallelism, where the amount of data used for computation each
cycle is increased. The improvement in fabrication technology has lead recently to a new paradigm
of system-on-chip (SoC) design where all components of a computer system are integrated into a
single IC.

Processor design has developed around the execution of sequential code. It has been driven
by increasing the instruction execution frequency as this relates directly to the run time of
computationally bounded programs. The view at this time was that power was free and that
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transistors were expensive. In order to maintain the trend of Moore’s law predictions and the
commercial success of processors, they have had to change radically. For example, achieving such
high clock rates has only been possible by exploiting parallelism within a serial instruction stream,
known as instruction-level parallelism. This has been realised with the idea of super-scalar
execution, where multiple instructions are issued and executed in parallel.

Such innovations in processor design and fabrication techniques are limited and have not
continued indefinitely. Only so much parallelism can exploited in an instruction stream, reducing
VLSI scales mean that quantum effects start to come into play, clock frequencies start to become
limited by the speed at which light can travel from one side of a chip to the other [16] and
power consumption has become an important issue. The old thinking has been turned around,
with transistors now being effectively free, but power being expensive. Around 2004, due to
the combination of these issues, chip manufacturers began to feel it was necessary to change
direction; away from the traditional ideas of serial execution and move towards more explicit
ideas of parallelism as this was the only way to continue improving performance. Parallelism is
now the dominant computer architecture paradigm and increasing parallelism is now the primary
method of improving processor performance [2]. This change has been seen in the new generation
Intel and AMD multi-core chips and in the development of graphics processing architectures.

Parallelism is not a new idea, and it has been employed in many different areas of computing,
most commonly at bit and instruction levels. In particular though, it has been necessary since the
1960s to achieve high computational performance in supercomputer systems by running many
processors concurrently to gain data and task-level parallelism. This approach has continued since
then and has been classified more broadly by high performance computing (HPC) which includes
distributed systems like clusters and grids, which for example support the massive developing
web-infrastructure. Currently the top HPC systems in the world today have in excess of 100,000
cores [41]. The paradigm shift towards parallel architectures is significant, as there is a growing
convergence in the ideas between personal computing and supercomputing.

The development of parallel computer systems raises a whole new set of new issues not found
in single core systems. Many of these problems include important issues that apply to the whole
spectrum of parallel architectures from multi-core desktop computers to massively parallel HPC
systems, such as the ways in which communication and synchronisation between different cores
and sub-tasks can be achieved. This project is motivated by the increasing importance of the use
of parallel architectures in computing and digital systems.

1.2. Importance of Interconnection Networks

Communication is the process of moving data from one location to another and is achieved by
the use of an interconnection network. Interconnection networks are used in a wide range of
digital systems, with the most common uses in processor-memory interconnects, input/output
device connections and in packet switching fabrics. Packet switching fabrics for instance, are
used by modern telephone networks and have been widely studied for decades. More recently,
rapid developments have been made by research focused on interconnection networks for new
generations of multi-computer systems. This work has started to find applications in other areas
such as local area networks (LANs) and as an alternative for back-plane buses, creating the
concept of system area networks (SANs) [22]. The use of interconnection networks are emerging
as a universal solution to system-level communication in digital systems [7]. They are now even
becoming viable alternatives in IC design to routing dedicated wires, as routing packets on a
system interconnect is more economical [10]. An example of this is with Intel’s new QuickPath
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Operation Delay | Energy
32 byte register read 125ps | 0.6pJ
23 byte ALU operation 650ps | 0.3pJ

32 byte read from 8 Kbyte RAM 780ps | 3pJ
32 byte transfer across 10mm chip | 2300ps | 17pJ
32 byte transfer off-chip - 400pJ

Table 1.1.: Delay and power figures from Dally [9] contrasting the difference in cost between
computation and communication.

Interconnect [21], a point to point processor link which also replaces the traditional Front Side
Bus architecture. The key point is that interconnection networks are efficient solutions to these
problems because the communication resources are shared between the components of the system,
instead of existing as dedicated routes.

Independent of their application, interconnection networks have a set of common parameters
that must be tailored to the requirement of the application. These include the number of com-
munication nodes and their average and peak bandwidth, and the required latency. With the
Internet, often high latencies can be tolerated; a HTTP request across the world may take several
seconds, but this makes little difference for a human browsing the web, whereas high latency
in a processor-memory interconnect massively effects the performance of the whole system.
Interconnection networks must also be designed based on the information that is communicated;
whether it can be packetised or must be streamed, what type of traffic behaviour is expected, the
required quality of service (QoS) regarding the allocation of resources between packets. Important
factors are also the reliability: a measure of how well the network correctly delivers messages,
and the availability: the fraction of time the network is operating correctly.

Due to the increasingly widespread use of interconnection networks, the performance of
most digital systems today has become limited by their capabilities. In computer systems, the
bottle-neck factor has traditionally been due to memory accesses. This was because the rate of
microprocessor improvement exceeded the rate of improvement in RAM technology. However,
with parallel computer systems the limiting factor in terms of delay and power is due to the
physical interconnections. Table 1.2 presents delay and power figures from William Dally [9]
for 0.05um fabrication showing the disparity between computational operations such as register
reads and ALU operations and on and off-chip communications. In terms of delay, there is a 2:1
ratio for communication to operation delay, and for power it translates to a 56:1 communication
to operation cost on chip and 1300:1 off-chip.

These ratios will continue to widen as the physical performance of interconnects doesn’t scale
with technology; the cost of sending signals down wires cannot be improved much, but the
performance of memory and processors continues to develop rapidly. With the increasing number
of cores in parallel systems the interconnect will increasingly dominate delay and energy. It is
necessary therefore to architect efficient interconnection networks so to trade-off between factors
like energy consumption and throughput. This requires thinking about factors such as VLSI
implementation costs, topology, routing and flow control.



Chapter 1. Motivation and Background

1.3. Parallel Architectures

The driving force behind much of the research into interconnection networks has been the design
of parallel computer systems. These range widely in their forms and uses, but all share similar
interconnection network designs, specifically in the use of packet switching fabrics. A packet
switching fabric is a combination of hardware and software that connects nodes together in a
network to allow communication between combinations of nodes. This is usually achieved with
crossbar switches which act as a hub to mediate communications between computers, but also
sometimes with point-to-point links (direct connections between computers).
Parallel systems can broadly be divided into the following classes:

e Massively parallel. A massively parallel processor (MPP) is a single computer consist-
ing of many networked processors, they are often referred to as supercomputers. These
are typically bespoke systems and designed for particular types of fine-grained highly
computationally intensive tasks such as simulation of mathematical models for predicting
weather or molecular modelling. They are usually built using special purpose processors
and interconnects, an example of one is IBM’s BlueGene/L supercomputer'.

e Clusters. A cluster is a set of networked computers, commonly by a local area network
(LAN). Cluster systems can be built from off-the-shelf commodity equipment, giving a high
performance-to-cost ratio. Clusters are often used for less-tightly coupled computations,
where the communication-to-computation ratio is low n nodes is lower, compared to
traditional single-system supercomputers. Increasingly though, supercomputers are being
built as clusters, due to developments of high performance interconnects such as Myrinet?
and Infiniband>. Currently, of the world’s top 100 supercomputers, 40 are clusters [41].

e Grids. Grid computing is the most distributed form of parallel computing and is optimised
for loosely coupled computations, usually for many independent jobs. It is often a im-
plemented as a form of cluster such as a data centre, but grids can also be realised over
the Internet. They can be used to provide computing as a utility, or to compute so-called
embarrassingly parallel problems where it is trivial to parallelise as little or no inter-process
communication is required. For example the SETI@home” project has been successful as
it can be run on idle desktop computers requiring communication only of data to work on
and the result of the computation.

e Multi-core. A multi-core processor is one which contains multiple processing cores, allow-
ing multiple instructions to be issued from multiple streams each cycle. The performance of
such systems is limited by the extent to which the computation can be parallelised. Modern
multi-processor systems are increasingly being designed as network-on-chip (NoC) archi-
tectures where processing cores are often arranged uniformly and are connected together
by some packet switched network in some uniformly arranged topology such as a mesh or
hypercube”.

e Special purpose. Parallel architectures are also utilised in a range of specialised appli-
cations. One common example is graphics processing units (GPUs) which use systolic

'www.research.ibm.com/bluegene/
ttp://www.myri.com/
*http://www.infinibandta.org/
‘nttp://setiathome.ssl.berkeley.edu/
3These will be described in more detail in Chapter 2
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1.4. Irregular Interconnection Topologies

arrays, where a single instruction acts on multiple items of data, known more generally as
a single instruction, multiple data (SIMD) architecture. Recent GPUs have allowed general
purpose computations to be performed with them, but this allows only for loosely coupled
parallelism for example with linear algebra calculations. Another is application specific
integrated circuits (ASICs), which are ICs customised for a specific use and are usually
designed as a NoC.

The key feature of processor, or more generally HPC networks, as opposed to regular computer
networks is the tight-coupling between processes. This means that messages must be delivered in
high volume, while at low latency.

1.4. Irregular Interconnection Topologies

Many of the interconnection networks found in parallel systems, particularly those related to HPC
where the coupling between processes is tight, are based on regularly arranged topologies such as
arrays, meshes or hypercubes. Regular topologies offer a good trade-off between performance
such as high throughput and wide path diversity against the constraints of the available fabrication
technology. Low dimensional mesh and hypercube networks have been popular choices in many
systems due to their low packaging constraints; the physical constraints in fabrication of the wires
between logic blocks. It is becoming more important now though to consider topologies where
the structure has an irregular or non-uniform construction. This is motivated by developments in
the following areas.

1. Fault-tolerance is becoming an increasingly important issue. As VLSI processes can
fabricate huge numbers of transistors in NoC architectures, the probability of faults within
them increases; some small area of the chip maybe defective while the rest is fully functional.
Similarly, with systems of multiple chips arranged in uniform topologies, such as in
supercomputers, large numbers of processing elements increases the likelihood of failure.
Hardware faults can result in the original network to degenerate into some non-uniform
topology, causing the original routing algorithms to become ineffective. With a routing
strategy resistant to faults the functional elements of the chip or functioning processing
elements may be fully utilised.

2. Application-specific NoCs commonly consist of heterogeneous components of varying
size, making uniform interconnections difficult or impossible when the system is arranged
on a chip die. It is therefore necessary to employ a routing strategy able to route around
irregularities whilst preserving desirable NoC routing properties such as low power con-
sumption, low latency and small VLSI implementation costs. Also, emerging applications
such as networked audio, where audio signals are carried over a network instead of expen-
sive audio signal cables would require non-uniform topologies but with low latency high
bandwidth communication.

3. Dynamic changes. Irregular topologies may also arise from dynamic changes to the
connectivity of the network. The ReNoC (Reconfigurable NoC) architecture [39] allows
changes to the topology including long range links and direct links between intellectual
property (IP) blocks so the system can be customised for the application running on the
chip. Topology changes may also be caused by the use of bypassing techniques, where
a particular node’s routing function is avoided by a wire in a single direction in order to
reduce the latency and energy costs associated with the routing circuit.
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4. Nano-scale NoC assemblies. Traditional NoCs are built using a top-down approach, where
IP blocks are connected using a regular or customised topology. Self-assembled nano-scale
electronics is a rapidly developing new technology, which is a potentially exciting new
approach to NoC fabrication. However, such networks would be inherently irregular and
would require appropriate means for reliable and efficient communications [40].

5. Application to existing networks. Innovations in routing fabrics for HPC systems may
also be applied to existing irregular systems. For example, the Internet, where the current
routing infrastructure will not be able to meet the future demands on its size due to the poor
scalability of router design [42].

1.5. Interconnection Network Design and Nomenclature

Every application using an interconnection network to communicate between system components
will have a specific set of requirements of the network, some with greater importance that
others. For example, a network may require very low latency, but not absolute reliability. To
architect a network to meet these requirements it is necessary to consider the three core aspects
of interconnection networks: fopology, routing and flow control within the technology available.
This section will introduce these concepts.

1.5.1. Topology

In an interconnection network, the physical topology is the arrangement of communication
channels between a set of nodes, i.e. which nodes are physically connected to which other
nodes. A network can also have a logical or virtual topology, where communications follow a
mapping of paths on the physical connections. There are a great number of different topologies,
each with a different set of properties. Selecting a suitable topology is vital to the design of a
network as the routing and flow control mechanisms will rely heavily on its properties and the
physical implementation must be within the means of the fabrication process in terms of cost and
technology.

Ideally, an interconnection network would be fully connected to allow simultaneous direct
communication between all pairs of nodes, achieving optimal bandwidth and latency. This
approach can be applied to systems with few terminal nodes, but it does not scale to larger
networks as the degree of each node would be equal to the number of nodes. The network capacity
must scale with the number of processors, properties of the combination of a good choice of
topology and routing strategy.

Topology Model

It is useful to represent the topology of a interconnection network abstractly as a directed graph.
This allows a mathematical formulation of the routing problem to analyse the behaviour.

Definition 1. (Interconnection network). The vertices N represent the set of processing nodes
and the edges C represent the set of communication channels between then nodes. Each channel
c = (ng,ny) € C connects a source node n to a destination node ny where ng,n, € N. The
source node of a channel is denoted s. and the destination d..

The above definition describes a direct network, where each node is terminal, in that it acts as a
source and sink for messages and also as a switch to route incoming messages. In contrast, an
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indirect network contains non-terminal nodes that are used just for switching. When referring to
the number of nodes in a network NV will often be used instead of | V|, the context will always
make this clear. Also, a message refers to a variable-sized piece of data generated by a processing
node to be sent to a different destination node. This message is broken down into a set of smaller
possibly variably-sized packets by the network layer to be transported over the network for the
allocation of control state.

Definition 2. (Channel). A channel ¢ € C has associated latency and bandwidth values given
by functions | : C — R* and b : C — R respectively. An undirected graph can be thought of
as a generalisation of this where each edge has a channel in each direction. Messages can be
generated and consumed at any nodes n € N.

Definition 3. (Channel set). Each node n € N has a channel set C,, = Cy, U Cp,. Where
C1, = {c € C|d. = n} is the input channel set, and Cp, = {c € C|s. = n} is the output
channel set. The degree of n is 6, = |Cy,| which is the sum of in degree 61, = |C7, | and the
out degree 00, = |Co,,|. Let the set of virtual channels be denoted C', and the virtual channels
belonging to a channel ¢ € C denoted c'.

Definition 4. (Path). A path is a sequence of contiguous channels P = {cy, ca, ..., ¢p } where
de; = S¢;1 fori =1, ..., (n — 1). The source of a path is sp = s., and the destination of a path is
dp = d,. The length or hop count of a path is |P|. I is said to be connected if at least one path
exists between all source and destination pairs.

Definition 5. (Minimal path). A minimal path from n to n, is one that connects n, and n, and
has the smallest hop count. The set of all minimal paths from n,, to n, is denoted R, .. H(x,y)
is the minimal path between n, and n,,.

Properties

For a network topology to have good communication performance, it is important that the diameter
is small as it is a lower bound on for the worst-case time necessary on the maximal path distance
between a pair of nodes.

Definition 6. (Diameter). The diameter of a network H,, .. is the largest minimal hop count
over all pairs of nodes in the network.

Hpor = xngi%}]i/ H(.%', y)

Theorem 1. Every network of size n and maximum degree 6 must have a diameter bounded by

log|N | >

Hmax =Q| —
<log((5 -1)

(For a proof see Appendix A.l)

It is also important that the network does not have a bottleneck where many paths share a small
set of nodes. For example, the complete binary tree topology forms a bad communication network
since for any node, half of the possible destination nodes can only be reached by traversing the
root node. This factor is measured by the bisection width of a network.
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Figure 1.1.: Example torus and butterfly topologies, important classes of regular topologies.

Definition 7. (Network cut). A cut of a network C (N1, N2) is a set of channels that partitions
the set of nodes N into two disjoint sets N1 and Ny. Each element of the cut C(Ny, Na) is
a channel with one end in N1 and the other end in No. The number of channels in the cut is
|C' (N1, N2)| and the total bandwidth of the cut is

B(Ni,Ny)= > b
ceC(N1,N2)

Definition 8. (Channel bisection and bisection bandwidth). A bisection of a network I is a
cut that partitions the nodes into two disjoint sets N1 and Ny where N; = N\ Ny, such that they

have size < % The bisection width or channel bisection B¢ is defined as

= min  C(Np, No).
C = 1y TR O 01 V2)

The bisection bandwidth Bpg is the minimum bandwidth over all bisections in the network.

B(N1, Na)

B = min
|N1[=[IN1/2]

A more general form of bisection width is the expansion of a graph. It describes for a subset of
vertices S, how quickly they expand, in the sense that it is connected to many vertices of the set
S, the complementary set of vertices.

Definition 9. (Expansion). The expansion « of a network I is defined as

o, )]
1) = min —— 29N
) = B2 i 0T, 107

Theorem 2. For all networks I = (N, C'), the expansion can be at most 1. (For a proof see
Appendix A.2)
Topology Classes

There are many different classes of network topology used in parallel systems, and infinite
variations on each one. Many of these classes have been developed from two main families;
butterflies and tori. Butterfly networks are indirect and are attractive they as have optimal diameter,
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but have shortcomings with no path diversity, where the bound given by Theorem 1 is tight (only
one path connecting each pair of nodes), and they also require long physical wires in their
implementation. Tori are a class of direct networks which have good packaging characteristics
and good physical communication locality. Figure 1.1 shows examples of these important types
of topology.

In the 1970s, high dimensional binary n-cube or hypercube networks were popular because
of their low diameter but gradually due to realistic packing and fabrication constraints it was
shown that low-dimensional networks such as 2-D or 3-D meshes outperformed hypercubes.
Low dimensional meshes and tori have uniform length wires and logically minimal paths are
almost always physically minimal as well. For these reasons, low dimensional meshes and tori
are used predominantly today in interconnection networks, although it is probable that use of
high degree indirect networks like butterflies will increase in the future as the bandwidth of router
chips increases relative to the message length [7]. The focus, in terms of regular networks, in this
project will be on meshes and tori.

1.5.2. Routing

Routing in a network is the process of directing messages generated by a source node through
the network to a destination node. It is important that routing algorithms have low communica-
tion latency, provide high network throughput and in HPC systems have a simple or compact
implementation. The network topology and physical implementation define these characteristics,
providing a lower bound on the performance of a routing algorithm. It is down to the design of
the algorithm to determine the extent to which the potential of this is realised.

There are a number of features that may be found with good routing algorithms, contributing to
low latency and high throughput. The most important factor is freedom from deadlock, where a
set of packets become blocked waiting for each other. Adaptivity is also important, in order to
cope with faults of certain traffic behaviours to balance communication loads. Lastly, routing
packets along shortest paths will directly effect latency and throughput. The properties of a routing
algorithm will depend on the application of the system. For instance, in embedded systems, power
consumption may be important and worth the cost of some latency. In other situations it be
important to optimise for one or a combination of factors such as network bisection size, traffic
flows and hot-spots, fault tolerance and VLSI implementation costs.

Taxonomy of Routing Algorithms

Uni-cast (single destination) routing algorithms can be divided into two categories source and
distributed. With source routing, the source node computes the full path of a packet to the
destination and stores it in the packet header. This means that intermediate nodes can have
a simple forwarding function, but each node must have information about the whole network,
and packet headers can become quite long; both factors effecting scalability. In contrast, with
distributed routing, the path of a packet is determined at each node from a destination address.
This method requires more complicated routing functions, but scales very well. Distributed
routing algorithms can in turn be divided into the following classes, by the way in which they
select from a set of possible paths R, ,, between a source n, and a destination n.

e Oblivious routing algorithms make routing decisions oblivious to the state of the network.
A set of paths are chosen in advance for every source-destination pair (ns,n;) € N, and
every packet for that pair must travel along one of these paths. The selection of one of these
paths may be random, but cannot depend on the state of the network.
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e Deterministic routing algorithms are a subset of oblivious algorithms. Deterministic
algorithms will always supply the same path between a source and destination pair (ns, n;),
even if |R,, »,| > 1, hence ignoring any diversity in the paths of the topology. This
deterministic nature provides no adaptivity to network conditions for fault tolerance or
load-balancing, but determinism does mean that they are often simple to implement and to
make deadlock-free.

e Adaptive routing algorithms use information about network traffic and/or channel status
to avoid congested or faulty regions. This may include current or historical information
on the state of a node or link and buffer and resource utilisation. Adaptive algorithms can
be minimal where packets are always forwarded closer to their destination or non-minimal
where they may not always be. The use of non-minimal paths adds complexity as packets
can arrive out of order. They can also be fully adaptive where packets can be routed
adaptively along all available physical paths, or partially adaptive where packets are limited
to a subset.

Routing Definition

A routing algorithm is represented by a routing function R that given some input values, for
example, the current and destination nodes, returns a channel, for deterministic functions or set of
channels for adaptive functions. For adaptive algorithms a selection function p is used to select a
channel. With this representation, issues regarding channel dependencies and deadlock are related
to the routing function R. As an example, an adaptive routing function R may have the following
form:

R:Nx N — P(C)

where the function takes a the current and destination node as arguments and supplies a set of
alternative output channels to send a packet from the current node n. to the destination node ng,
denoted by P(C), the power set of C.

Deadlock, Livelock and Starvation

The nodes of an interconnection network send, receive and forward-on packets. Messages will
usually traverse several intermediate nodes before reaching their destination, however even with
a fully-functioning network with fault-free paths connecting every source and destination node,
packets may become blocked and not able to reach their destination. There are three situations
that can cause this to happen.

e Deadlock: Buffer capacity in a network is a finite resource and must be allocated to a
packet before it can proceed. A deadlock occurs when messages cannot advance towards
their destination because the buffer space requested by them cannot be allocated as they are
full, in turn holding resources requested by other messages. In this situation the messages
are blocked forever, which is a catastrophic situation for the network.

e Livelock: A related situation is called livelock which occurs when messages are not able to
reach their destination, even if they are not permanently blocked. A message may travel
around its destination, but not able to reach it because the channels required to do so
are occupied by other packets, this can only occur when messages are allowed to follow
non-minimal paths.

10
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(a) (b)

Figure 1.2.: Figure (a) shows a simple network in a deadlocked configuration. Figure (b) shows
how deadlock can be avoided by restricting the available routing directions.

e Starvation: The last situation is known as starvation, which can cause packets to be
permanently blocked due to heavy traffic not allowing the release of resources requested by
the packet to proceed.

Figure 1.2 shows a simple mesh network of four nodes. If each node was to send a packet to
the opposite corner (indicated by the arrows in Figure 1.2(a)) at the same time, and the routing
algorithm routes packets in a clockwise direction then each link will become blocked and the
system deadlocks. Instead of routing routing all packets in a clockwise direction, a deadlock-free
algorithm for this network routes two of the messages anti-clockwise (assuming bi-directional
links) as indicated by the arrows in Figure 1.2(b) allowing all of the messages to travel without
deadlock.

Routing Mechanics

Routing mechanics relates to the way in which a routing algorithm is implemented. The most
common way to do this is with a routing table either just at the source with source routing or at
each hop with distributed routing. Table look-ups relate to the routing relations where values for
each pair of inputs are stored in the table. Another way is with algorithmic routing in which the
routing relation can be evaluated at run time a function of the input values. Algorithmic routing is
usually restricted to simple routing algorithms on regular topologies.

1.5.3. Flow Control

Flow control is the process of managing the available resources between communicating nodes.
In interconnection networks there are two types of resources: buffers and channels. Flow control
manages the flow of data in a network, preventing nodes from being over or under-loaded by
determining the allocation of these resources. Good flow control strategies will allow the network
to operate within a close range of its ideal bandwidth with low latency. There are a number of
different flow control methods, ranging from simple bufferless schemes where blocked messages
are just rerouted or dropped, to more efficient buffered schemes which decouple the allocation of
adjacent channels in time. This project will focus on wormhole and virtual channel flow control
together as they have become a standard method of flow control in HPC parallel systems.

11
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Message | P1 | P2 | P3 | P4 | | Pn

Packet | | B1 | B2 | | Bm | |

Header flit Body flits Tail flit

Figure 1.3.: A message is broken down into a sequence of n packets, each packet is transmitted
across the network as a sequence of m fixed-sized flits with appended head and tail
flits.

Wormhole Flow Control

To achieve low latency across an interconnect it is essential that wormhole flow control® is
used [8] as it makes efficient use of buffer space as variable-sized packets are broken down
into smaller fixed-size units called flits. Routing fixed-sized flits greatly reduces the required
buffering capacity at each node and the latency of packet delivery, compared to store-and-forward
or cut-through flow control where whole packets must be buffered. The size of a flit is dependent
on the implementation of the network. Often a flit is sent in smaller units called physical transfer
digits or phlits which are defined as the amount of data that can be sent down a channel in one
clock cycle. Phlits are not used to allocate resources, the link level protocol must interpret the
flits.

Messages generated by a processor are broken down into packets for allocation of control state
in the network. Packets are sent across a network as a series of flits which are used to allocate
buffer capacity and channel bandwidth. A packet is sent by a sequence of body flits with head
and tail flits appended to the beginning respectively. The header flit contains routing information
and a sequence number and proceeds first, allowing it to allocate a channel for the subsequent
body flits. If the resources cannot be allocated, the packet is blocked. As body flits are received
they are forwarded along the same path as the header and need only to acquire buffer space at the
downstream node to advance. On receiving a tail flit, the channel allocation made to the header flit
can be released and made available for a new packet. Wormhole flow control has its name as the
flits of the packet travel through the network like a worm in that the header flit may arrive at the
destination before all remaining flits have been transmitted. Figure 1.3 illustrates how messages
are broken down into packets, and packets in turn into flits.

Virtual Channel Flow Control

Virtual channels are another method of flow control that works very well with wormhole flow
control. The idea is that a set of virtual channels, each with their own flit buffer and control
state share a single physical channel to overcome the problem of blocking. A physical channel
becomes blocked when it has been allocated to a packet but a subsequent flit cannot progress
due to downstream buffer capacity. With virtual channels, the blocked channel’s state can be set
accordingly and another virtual channel can use the link. Virtual channels also have important
applications in avoiding deadlock, as Dally puts it [7]

%It is often referred to as wormhole routing or wormhole switching, but in fact is not related to switching or routing.
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Virtual channels are the Swiss-Army™knife of interconnection networks. They are
a utility tool that can be used to solve a wide variety of problems.

As with wormhole flow control, a header flit arriving at a node must acquire a virtual channel
(channel state), a downstream flit buffer and channel bandwidth. The channel bandwidth is
allocated between the set of virtual channels via some allocation policy, usually round-robin.
Subsequent body flits use the same virtual channel allocated to the header but they must acquire
space in the downstream buffer and channel bandwidth. Virtual channel flow control decouples
the allocation of channel state from channel bandwidth by preventing packets from acquiring
channel state then blocking use of the channel, i.e. available bandwidth.

1.6. Aims & Objectives

1.6.1. Project Aims

The main aim of this project is to investigate and explore the current approaches to routing
in irregular processor networks. Specifically, it will focus on algorithms that represent the
most recent developments in universal routing, i.e. the current best-performing algorithms that
work independent of the structure of the network topology. Analysis of these algorithms, both
theoretically and empirically, will give a detailed picture of their behaviour and performance
characteristics.

Routing algorithms are generally divided into those that use virtual channels to break deadlock,
and those that don’t. The motivation for this project is that no comprehensive universal routing
comparison has yet been made. In particular, between algorithms that use either virtual channels
or turn prohibition to break deadlock’, they are usually considered separately. Furthermore,
evaluation of universal algorithms is rarely conducted on regular topologies and results for
irregular topologies are never specific to the properties of the topology. Therefore, it is in these
areas that this project will focus.

1.6.2. Methodology & Objectives

The methodology for achieving these aims is broken down into the following objectives.

1. Literature review. Research and investigate the literature on universal routing algorithms
to identify the current best-performing algorithms, specifically representing the use of turn
prohibition or virtual channels to break deadlock. These algorithms will form the basis of
the investigation.

2. Build a simulator. Implement a software network simulation tool to enable the perfor-
mance evaluation of different routing algorithms and network topologies under a range of
simulation and network parameters. This will require researching the functionality and
architectural details of components in a network system, in particular network routers.

3. Implement algorithms. Implement the algorithms identified in the literature review to
work with the simulator. Doing this will give an in-depth understanding of their behaviour
and properties to be obtained, on which a discussion of their functionality and any issues
identified by the implementation to be based. For a full comparison it will also be necessary
to implement base-case algorithms as a benchmark.

"These terms will be introduced in detail in the following section.
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4. Perform experiments. Obtain a detailed set of experimental results using the simulation
tool to give an in-depth analysis of the performance of the algorithms. The results will
primarily include a range of different network topologies; specifically different classes of
random irregular topologies.

5. Evaluate results. Based on the experimental results, provide an analysis of the behaviour
of the algorithms with respect to different network topologies and their characteristics, and
to key simulation parameters.



Chapter 2.

Topologies and Routing

The premise of this project is to investigate the performance of universal routing algorithms on
irregular topologies. This chapter will present the topologies and routing algorithms used in this
analysis and experimentation. It will build upon the routing and topology background presented
in the last chapter, presenting full technical details. The third key topic of flow control will be
discussed in Chapter 3.

2.1. Topologies

The following classes of regular and random irregular topologies will be used to evaluate the
performance of routing algorithms.

2.1.1. Meshes and Tori

Mesh or k-ary n-meshes are class of direct networks composed of k£ orthogonal dimensions
containing N = k" nodes. An n-dimensional mesh has kg - k1 - ... - k,—1 nodes, k; nodes along
each dimension where k; > 2 and 0 < z; < n — 1. Each node € N is identified by an n-digit
radix-k address (or coordinate) (z,—1, Zpn—2,...,20) where 0 < x; < k; —1for0 <i <n —1.

Two nodes x and y are neighbours if and only if their identifiers differ by 1 only in one
dimension. Hence, nodes in a mesh have between n and 2n connected nodes, whereas nodes in
tori have constant degree due to extra links. These extra wrap-around links give tori regularity
(constant node degree) and symmetry. Graphs with constant node degree d are known generally
as d-regular, although the use of the terms regular and irregular in this project will relate to the
uniformity of the topology.

Definition 10. (Mesh and Torus). For k,n € N a k-ary n-mesh is a graph with node set
N = k™ and channel set

d—1
C= {{(xd—l,--wivo)’ (Yd—1, - yo) @i, yi € sz |z — yil = 1} .

1=0

A torus or k-ary n-cube network consists of a k-ary n-mesh with additional channel from
(Tg—1y ooy dig1,0,di—1, .y 20) 10 (Yd—1, -y Yit1, 0, Yi—1, ..., Yo ) for 0 < i < d. Hypercubes are
a special case of tori and meshes: 2-ary n-cube < 2-ary n-mesh.

Figure 2.1 shows some example mesh and torus topologies. Figure 2.1(a) shows a 4-ary 1-mesh,
or 3-node linear array, Figure 2.1(b) shows a 4-ary 1-cube, or 3-node ring, Figure 2.1(c) and
Figure 2.1(d) are the 2-dimensional versions.

2.1.2. Irregular Topologies

Given the motivations described in Section 1.4, irregular network topologies found in multi-
processor systems are often based on a regular structure such as a mesh that has degenerated into
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Figure 2.1.: The structure of example mesh and torus topologies

(a) (b)

Figure 2.2.: Example irregular topologies. (a) shows a degenerated 4-ary 2-mesh topology, (b)
shows a random irregular topology.

an irregular structure due to faults of dynamic topology changes. There is a distinction to be made
though between degenerated semi-irregular topologies and fully-irregular or random topologies.
Figure 2.2(a) shows an example degenerated mesh topology from failed links. Figure 2.2(b) shows
a simple example of an entirely random topology.

Random Graph Models

Random graphs are important mathematical constructs with varied applications. Recently, a new
area of research has emerged in complex networks, which has been motivated by studying the
properties of networks such as the Internet, flight-paths and even the biological structure of cells.
The key feature of such networks is that for any pairs of nodes, the distance between them is small
relative to the size of the network. This is known as the scale-free property and implies excellent
communication properties.

Much of the literature on routing in irregular networks considers the performance of algorithms
on unspecified random graphs, without any clarification of the properties of the graph, particularly
communication. This seems to be a large oversight, as there are many classes of random graphs,
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each with different properties that will effect routing behaviour. To look in-depth at the perfor-
mance of universal routing algorithms, the following random graph models will be used to as they
represent three important properties of graphs relating to structure and consequent communication
properties: scale and non-scale free, and clustering of subsets of nodes.

Erdos-Rényi Random Graph

One of the simplest, but most important classes of random graph is called an Erd6s-Rényi random
graph [15]. These graphs will almost certainly not be scale-free and will not contain clusters.

Definition 11. (Erdds-Rényi random graph). An Erdds-Rényi random graph G = (n, p) is one
where an edge exists between two nodes ni,no € n with probability p.

Theorem 3. For a random graph G = (n,p), the expected degree of a fixed vertex v is p(n — 1).
(For a proof see Appendix A.3).

Expander Graph

Definition 12. (Expander). A graph is called an expander if has constant expansion

Expander graphs are an important class of graphs with remarkable communication properties
[30, 43]. Intuitively, any sub-set of vertices is well connected to the rest of the graph, i.e. they are
scale-free. Random d-regular graphs have good expansion with high probability. [38] presents an
explicit construction of random d-regular graphs.

Given a random d-regular graph G with n nodes, where each node is connected to d other
vertices, chosen at random. Let U be a subset of G of at most n/2 vertices. For some v € U, v
will be connected to roughly d x |U|/n vertices in U and hence we expect

Lo

CW,0) ~dx =

and so B B
cw.0)l 0]
U] n

Since |U| has its minimum at approximately /2 is follows that a(G) ~ d/2, independent of the
size of the graph.

Barabasi-Albert Random Graph Model

The Barabdasi-Albert model [1] is an algorithm for generating random scale-free, clustered graphs
using a preferential attachment mechanism, where a clustered graph is one that contains sets
of highly interconnected nodes. The algorithm works by creating mg initial nodes with no
edges. New nodes are then repeatedly added, connected with an edge to an existing node ¢ with
probability
_ degree(i)
pi= >, degree(j)

After t steps, the network contains N = ¢ 4+ mg nodes and mt edges. The outcome is a small
set of heavily connected hub nodes, and many lesser connected nodes. Intuitively, new nodes
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preferentially attach themselves to hubs. This results in a power law degree distribution of the
form
P(k) ~ k73,

The average path length [ grows as
InN

"IN

2.2. Summary of Routing Approaches

2.2.1. The Theory of Deadlock-Free Routing

There has been a great deal of research in the area of routing in multi-processor systems. Much of
the work in the 1980s dealt with methods of deadlock-free routing algorithms in packet-switched
store-and-forward networks. These ideas were based on the concept of structured buffer pools
which enumerated the network resources and traversed them in order so to eliminate cyclic
channel dependencies that caused deadlock. Gopal proposed several fully adaptive minimal
routing algorithms, based on structured buffer pools, which are known as hop algorithms [19]. In
the positive-hop algorithm, for a network of diameter DD, a minimum of D + 1 buffers per node
were required as a packet in buffer ¢ would be stored in buffer ¢ 4 1 in the next node.

In 1987, Dally and Seitz [12] introduced an important new theory for developing deadlock-free
routing algorithms for wormhole routing based on removing cyclic channel dependencies through
the use of virtual channels and restricted routing. This was later extended by Duato in 1991 [13] to
allow the design of adaptive algorithms but also conditions necessary to develop algorithms even
with the existence of cyclic channel dependencies. Duato also developed a theoretical basis for
fault-tolerant routing in wormhole networks [14]. Glass and Ni [18] in 1992 made an important
contribution with a method for designing deadlock-free routing algorithms without the use of
virtual channels, instead by prohibiting enough routing turns to break cyclic channel dependencies.
This early theoretical work has underpinned much of the later developments in routing.

2.2.2. Routing in Regular Networks

Routing in regular networks has been studied extensively. There are several key approaches that
are used most commonly, such as dimension-order routing, and also that have formed the basis
for work on universal routing, such as the Turn model’s idea of turn prohibition.

¢ Dimension Order routing (DOR) is one of the simplest deadlock-free routing algorithms
for regular topologies and can be implemented algorithmically. It works on regular topolo-
gies that can be decomposed into orthogonal dimensions and routes messages by nullifying
the offset in each dimension in-turn.

e The Turn Model [18] is a general framework for restricting routing algorithms in mesh
networks. It works by prohibiting turns that form cycles. Deadlock can be avoided by
prohibiting just enough turns to break all cycles.

e Valiant’s trick: Valiant [43] proposed a simple but incredibly effective trick to balance load
for any traffic pattern on arbitrary topologies. The idea is to route packets to an intermediate
destination (usually randomly chosen) before routing to the final destination. Each phase
then appears to be uniform traffic. Any routing algorithm can be used for the two phases,
for instance with tori DOR can be used.
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e Planar-Adaptive routing [6] combines virtual channels with prohibited turns by defining
adaptive planes in a k-ary n-mesh, consisting of two adjacent dimensions. Within a
dimension any minimal, adaptive routing algorithm can be used. By limiting a plane to
two dimensions, the number of virtual channels required is independent of the number of
dimensions and the size of the network.

e Duato’s Protocol: [13, 14] Duato’s theoretical work for designing deadlock-free adaptive
routing algorithms, referred to as Duato’s protocol, is most commonly applied to add
minimal adaptivity to DOR in mesh and tori-based networks.

2.2.3. Universal Routing in Irregular Networks

Approaches to the development of routing strategies for irregular networks have been based
around either the use of virtual channels or turn prohibition to eliminate deadlock. The following
points give a brief description of notable algorithms that apply to arbitrary topologies as opposed
to tolerating faults in a specific topology.

Using Virtual Channels

e Multiple virtual networks. In 1991 Linder and Harden [25] developed an adaptive and
fault tolerant wormhole routing strategy for tori based on the use of virtual channels to
create multiple virtual networks. This was an important idea, but impractical because the
number of virtual channels required grew exponentially with the size of the network.

e Layered shortest path (LASH) routing. Linder and Harden’s work formed the basis for
LASH routing [37, 26], which divides a network into virtual layers where each layer is
assigned a set of source-destination pairs such that it is deadlock-free.

e Transition orientated routing [32] (TOR) also used virtual channels to create virtual
networks but used the Up*/Down* routing algorithm [35] to decide when to make transitions
between layers. However, due to the large number of restrictions imposed by Up*/Down*,
a high number of virtual networks could be required.

e Descending Layers (DL) routing [24] is a similar virtual network scheme developed in
2003. It divides the network into sub-networks with the same topology consisting of layers
of virtual channels and establishes a large number of paths across sub-networks in order to
reduce path length and congestion.

e LASH-TOR: [36] In 2004, a new algorithm called LASH-TOR, based on the ideas of
LASH and TOR was developed which reduced the required number of virtual layers and
allowed transitions easily between them.

Using Routing Restrictions

The problem with the use of virtual channels is the requirement of more complicated hardware due
to the requirement of extra buffers. Also, where virtual channels are available, then the number is
often limited and often dedicated to services such as flow control. Algorithms based on routing
restrictions, building on the turn prohibition model, do not require virtual channels, instead apply
directional restrictions to the use of channels to ensure cyclic channel dependencies are broken.
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e Up*/Down* routing [35] was proposed in 1991 and is widely used in LANSs. It works by
constructing a spanning tree of the network, eliminating all cycles, and routing packets up
and then down the tree. Up*/Down* is simple and applies to irregular topologies well, but
makes poor use of network connectivity and creates congestion around the root node of the
tree.

e Smart routing [5] was developed in 1996 as an alternative to Up*/Down*, and works
by breaking channel dependency cycles by explicitly building a dependency graph and
searching it. Cycles are broken that minimise a heuristic cost function.

e FX routing [33] looked to improve the performance of Up*/Down* in regular topologies
and in balancing traffic. FX still uses a depth-first-search to construct a spanning tree but
removes cyclic dependencies in a more flexible way.

e L-Turn routing [23] was again based on Up*/Down* but uses a less prohibitive spanning
trees which distribute traffic more evenly to provide adaptive deadlock free routing.

e Segment-based routing (SR) [27] was developed in 2004 and works by partitioning the
topology into segments and placing turn restrictions locally within a segment. This intro-
duces a locality independence property allowing fewer restraints compared to algorithms
such as Up*/Down* and FX.

2.2.4. Static and Dynamic Configuration

Universal or fault-tolerant algorithms are adaptive to irregular topologies in the sense that they
can be configured (by the use of virtual channels or routing restrictions) for a particular topology.
In the case of fabrication faults, the routing logic may be configured statically once before use to
compensate. If the network must react to topology changes caused by faults or from bypassing
nodes during execution, this may be achieved with a static reconfiguration phase while the system
is temporarily halted, or dynamically while it is still running.

Dynamic reconfiguration is an attractive concept particularly for bypassing as it can be per-
formed on the basis of the behaviour of communications, as opposed to static analysis which
requires knowledge of the application and topology and can be computationally expensive. Such
dynamic reconfiguration functionality is complex and hence current practical approaches only
consider static reconfigurations.

2.3. Routing Algorithms Chosen for Analysis

The focus of this project will be an empirical study of the current approaches to topology-agnostic
routing in processor networks. To do this, it will look specifically at two algorithms that represent
the most recent developments in turn prohibition and use of virtual channels; Layered Shortest
Path Transition Orientated Routing (LASH-TOR) and Segment-based Routing (SR). Up*/Down*
routing, which is widely used to provided deadlock-free routing in LANs will used as a basis for
comparison. The basis for the use of virtual channels or turn prohibition is to prevent deadlock.
Before introducing the algorithms, the conditions necessary for deadlock freedom, fundamental
to the design of any routing algorithm, will be introduced.
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Figure 2.3.: The (undirected) channel dependency graph (right) for a 3-ary 2-mesh (left). Channel
nodes are marked with filled circles. It is presented here undirected for simplicity, but
for detecting deadlock it must be directed.

2.3.1. Conditions Necessary for Deadlock Freedom

The basis for deadlock freedom in the design of routing functions is to prevent cyclic dependencies
between the use of channels. The following theorem by Dally [12] originally introduced this
condition. A key assumption to this theorem is that a queue can only contain flits belonging to
one packet. After accepting a header flit it must accept the remainder of the message before it can
accept another header flit. This is so that when a message is blocked, the header flit will always
occupy the head of the queue. The theorem uses the routing function R : C' x N — C' which
takes the current channel and destination node and returns an output channel. It also requires the
following definitions.

Definition 13. (Channel dependency graph). A channel dependency graph (CDG) D for a
given interconnection network I and routing function R, is a directed graph D = (C, E). The
vertices of D are the channels of I, the edges of D are the pairs of channels connected by R:

E = {(ci,¢;j) : R(¢i,n) = cj for somen € N}
There can be no self-loops in D as channels cannot route themselves.

As an example, Figure 2.3.1 shows the channel dependency graph for a 3-ary 2-mesh.

Definition 14. (Configuration). A configuration is an assignment of a set of flits to each queue,
all of them belonging to the same message. The number of flits in the queue for channel c;
is denoted size(c;). If the first flit in the queue for channel c; is destined for node ng, then
head(c;) = ng. If the first flit is not a header and the next channel reserved by the header is c;
then next(c;) = c;. Let Cy, C C be the set of channels containing a header flit at their queue
head. Let Cy C C be the set of channels containing a body or tail flit at their queue head. A
configuration is legal if and only if

size(c) < capacity(c)
vee C{ size(c) > 0 = ¢ € R(c, head(c))

Definition 15. (Deadlocked configuration). A deadlocked configuration for a routing function
R is a nonempty legal configuration such that the following conditions hold:
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head(c) # d

1. Vee(Cy { size(c;) > 0Ve; € R(c, head(c))
head(c) # d

2. Vee(Cy { size(next(c)) = capacity (next(c))

In a deadlocked configuration, no flit is one hop from its destination. Header flits cannot
advance because the queue for the output channel supplied by the routing function is not empty.

Theorem 4. A routing function R for an interconnection network 1 is deadlock free if and only if
there are no cycles in the CDG D.

Proof. = Suppose a network has a cycle in D, the cycle must be of length 2 or more as no
1-cycles can exist. Thus, a deadlocked configuration can be created by filling the queues of each
channel in the cycle with flits destined for a node two channels away, where the first channel of
the route is along the cycle.

<« Suppose a network has no cycles in D, since D is acyclic, a total order to the channels of C
can be assigned so that if (¢;, cj) € L then ¢; > ¢;. Consider the least channel in this order with
a full queue ¢;. Every channel ¢,, that ¢; feeds is less that ¢; and thus does not have a full queue.
Thus, no flit in the queue for ¢; is blocked, and no deadlocked configuration can exist.

Duato later showed [13, 14] that this condition was sufficient but not necessary to eliminate
deadlock and was consequently too restrictive. Arguing that applied to non-adaptive routing it
can increase congestion in heavily loaded regions and the use of adaptivity would avoid this. He
showed that a more flexible condition existed for adaptive routing algorithms that allowed cycles
in the CDG.

2.3.2. Dimension Order Routing

Dimension order routing (DOR) is a type of algorithmic routing for meshes and tori. It exploits
the orthogonality of each dimension in these topologies and works by nullifying the offset of a
message from its destination, in each dimension in turn. Each node is given a radix-k address,
where k is the dimension of the network and digit ¢ is denoted d;. For a mesh network a direction
D is computed for dimension ¢ by

D: — +1 ifd; > s;
"7 1 —1 otherwise

DOR for meshes is deadlock free as no cycles can be created, but in torus networks with extra
wrap-around links, deadlock can occur within a dimension.

2.3.3. Up*/Down* Routing

Up*/Down* routing, commonly referred to as the spanning tree protocol, was first proposed in
[35]. It works by creating a loop-free logical assignment of directions to the physical links. The
assignment uses a spanning tree constructed from an elected root node to do this. Links have
either an up or down direction depending on whether a traversal moves closer to the spanning tree
root node. A legal route is then defined as one that never uses a link in the up direction after it has
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Figure 2.4.: Example regular and irregular topologies with spanning trees marked with bold links.
The root node for the tree is marked with an ‘R’.

used one in the down direction. Figure 2.3.3 shows two example topologies with spanning trees
calculated.

Up*/Down* routing has two serious shortcomings, the first is that much of the traffic has to
pass through the root node leading to congestion poor load-balancing. Secondly, many of the
physical links are left idle, wasting spare network capacity. Many improvements and variations
have been proposed to Up*/Down* over the years [5, 33, 23], generally aiming to alleviate these
two issues.

2.3.4. Layered Shortest-Path Transition-Orientated Routing

Layered shortest-path transition-orientated routing [36] (LASH-TOR) is the product of two routing
approaches. Layered shortest-path [37] (LASH) routing which provides deterministic shortest
path routing any network topology. It makes use of virtual channels to divide the network into
different virtual networks (layers) to avoid deadlock, each layer has a set of source-destination
pairs assigned to it such that no cycles are created in the CDG. Transition-orientated routing [32]
(TOR) also uses virtual networks, but uses Up*/Down* as a baseline routing algorithm to decide
when to change to a new virtual network (when a forbidden down-up transition appears).

The LASH-TOR algorithm is an extension to LASH to allow transitions between layers using
the methodology employed in TOR. The result is full minimal routing with a low virtual channel
requirement that outperforms LASH on all network topologies with a bounded number of virtual
channels. The remainder of this section, based on the proposal for LASH-TOR [36], will explain
how the algorithm works.

Definition 16. (Network layer). A network layer L; of a network I is a subset of virtual channels
in I such that each link has two channels, one in each direction in L;.

Definition 17. (Layering). A set of network layers L = {L1, ..., Ly, } is a layering if and only if

1. Vi, L; is a layer of I.
2. LinL;j=0vYi#j40<4,j5<n.
3. All channels in I belong to only one L;.

Definition 18. (Traffic assignment function). Given a layering L of a network 1, a traffic
assignment function 1" of L is a function

T:N x N — P(L) x P(N)
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that takes a source-destination pair (ns,ng) and returns subsets L' C L and N' C N where
L' = {Lu, ..., Ly} is an ordered set of layers used in the minimal path and N' = {n1, ...,n|n|}
is the set of layer transition nodes where n; € N' represents the node that a transition from layer
L; to L1y is made. Also, |[N'| = |L'| — 1.

The traffic assignment function calculates for a minimal path between two nodes ng and ng the
assignment of the path to layers; each layer containing some subsection of the path, such that the
CDG for each layer remains cycle free. If the whole path can be assigned to a single layer then
N’ = (). The routing function R used for LASH-TOR is defined as

R:NxC' xN—=(C".

That is, given the current node, current virtual channel and destination node, R returns an output
virtual channel.

Description of Algorithm

The input is a network / = (N, C') and a bound [ on the number of layers such that |L| < .
Layer ud € L is used as a fall-back for any paths which cannot be normally assigned to layers
Ly, ..., L;_1 by using Up*/Down* routing. The CDG of layer L; is denoted CDG(L;).

1. Initialise 7" and R. Let T'(s, d) < undefined for all source-destination pairs ns,ng € N,
s # d and R < empty.

2. Compute paths. For all source-destination pairs (ns,n4), calculate the set of minimal
paths m between them within the network I, there may be multiple minimal paths.

3. For each pair (ns,ng):

a) Compute transitions. For each minimal path m; € m, evaluate T'(s, d) to obtain
{L', N'},,,. Enrich R with m; according to the transitional nodes n; € N’, ensuring
this does not create any cycles in CDG(L;) for each layer L; € L'. If there are
insufficient layers (|L'| > |L| — 1), then {L’, N'},,, < undefined.

b) Choose smallest transition. For each minimal path m; € m, select the m having
{L', N'},,, defined with the smallest | L'|. If one exists then let T'(s, d) < {L', N'},,
and update R accordingly, otherwise T'(s, d) <— undefined.

4. Assign Up*/Down* paths. For all pairs (ns, ng) with T'(s, d) undefined, determine the
path between them using Up*/Down* routing and update CDG (up); by definition this will
contain no cycles.

5. Recompute transitions. For all pairs (ns, ng) with 7'(s, d) undefined, evaluate 7'(s, d)
using the same shortest path used in 3a (m;), this time allowing the use of the layer ud. If
there now exists a valid set of transitions {L’, N'},,,., let T'(s,d) < {L’, N'},,., otherwise
T(s,d) < {{ud},0} and update R accordingly.

6. Balance layers. To distribute paths more evenly among the layers, select a random pair
(ns, nq) whose path is entirely assigned to L1, and reassign it to a random layer L; € L if
it does not create a cycle in CDG(L;). Repeat this until the number of sub-paths in each
layer is evenly balanced.

24



2.3. Routing Algorithms Chosen for Analysis

2.3.5. Segment-Based Routing

Segment-based routing [27] (SR) is a deterministic routing methodology that uses turn prohibition
to break deadlock instead of virtual channels. Its unique feature is a locality independence
property, which allows bidirectional turn restrictions to be placed within small sub-graphs, or
segments of the network topology without effecting any other segments, unlike many other turn
prohibition-based algorithms such as FX and L-Turn routing. The remainder of this section, based
on the description in [27], will describe how the SR algorithms works.

Definition 19. (Segment). A segment of a network I is a set S = {N',C"} of nodes N' C N
and channels C' C C. Segments are disjoint; S; N S; = 0 Vi # 3,0 < 4,7, < |N|. Segments can
be of the following types:

1. Starting segment. A starting segment is a set of nodes starting and ending on the same
node, forming a cycle. The cycle can be broken by placing a bidirectional turn restriction
on any node, except the starting one (as a cycle could be introduced between two subnets).

2. Regular segment. A regular segment starts and finishes on a link and will contain at least
one node. Any cycles created by regular segments can be broken with a single bidirectional
turn restriction on any node belonging to the segment.

3. Unitary segment. A unitary segment contains only one link, no traffic can be allowed to
cross the link as this could introduce cycles through connected segments. To do this, a
bidirectional turn restriction can be placed at the node at one end of the segment, between
it and every connected node.

Definition 20. (Subnet). A subnet is a set of nodes and channels contained in one or more
segments, that is connected to the rest of the network through only one link.

Description of Algorithm

The pseudo-code of two main methods are given in the paper, but for simplicity, a higher-level
description is given here. The input to the algorithm is a network I = (N, C).

1. Initialise. Pick a random start node n € N and mark it as starting. Let the current subnet
a <+ 0.

2. Repeat.

a) Find a new segment. Try to find a new segment S starting from node n of nodes
and links not already belonging to a segment. If n is marked as starting the segment
must also end on n, otherwise it must end on a node belonging to another segment.
Essentially, a random walk is performed on the graph.

b) On success. Add the segment to a list of segments s = s U {S} and go to 2a.

¢) On failure. Mark this node as terminal and pick a node n’ € N belonging to a
segment in the current subnet with at least one channel not belonging to any segment
and setn + n'.

d) Start new subnet. If such a node does not exist, pick a node n’ not belonging to any
segment that is not marked as terminal, but is attached to a terminal node. Set n’ as
starting and start a new subnet; o < o + 1.

e) Terminate? Again, if such a node does not exist, then terminate as no new segments
can be found.
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Figure 2.5.: Example stages of the segment routing algorithm operating on a degenerated mesh
topology. The top left shows the topology with labelled nodes and links. The top right
shows the computed segments labelled with numbers and subnets are outlined and
marked with SN*. Bottom right shows possible placement of the bidirectional turn
restrictions, where each angled line in a node indicates the direction of a prohibited
turn. Finally, bottom left shows the dual representation used to calculate minimal
paths.

Placement of Bidirectional Turn Restrictions

There is no way to place bidirectional turn restrictions on the network graph [ in order to calculate
shortest paths, and no alternative method of doing so is mentioned by the paper. A neat way of
doing it though, is to construct a dual graph representation [3], which is similar to a CDG, defined
as follows:

Definition 21. (Dual graph). A dual graph W of a network I is one in which the nodes represent
the channels and the edges represent the turns that can be made between the channels:

E = {(w;i,wj) : ¢; = ¢; is a valid turn for some c;,c; € C'}

For each node n € W, src(n) denotes the source node in I and dest(n) denotes the destination
node. Turn restrictions for I can made by removing the appropriate edges from W of I. The
calculation of shortest paths is slightly more complicated as paths between two nodes ns, ng € I
exist between all pairs of nodes ws, wy € W such that src(ws) = ng and dest(wg) = ng.

2.3.6. Summary of Presented Algorithms

The fundamental difference between the LASH-TOR and SR algorithms is their use of virtual
channels. That said, SR is not incompatible with them; if virtual channels are available in a
network, they can provide underlying flow control as described in Section 1.5.3. Although break
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deadlock in different ways, they are most similar in that their routing functionality is based on
oblivious minimal routing, where messages are routed along a set path independent of the state of
the network.

Another key point that differentiates them from light-weight routing algorithms such as DOR
and Up*/Down?*, is that they both employ centralised and computationally intensive configuration
phases. In any real implementation this means that a single node in the network would need access
to a full map of the topology and significant computational power to initialise the routing tables,
which is feasible, but limits the applications. In many situations, such as LANSs, this is difficult if
not impossible. One of the reasons Up*/Down* routing has been so successful is that it can be
implemented in a distributed way, so that each node contributes to determining the spanning tree
of the network. Essentially, this is the trade-off made in leveraging good routing performance
independent of the topology.
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Chapter 3.

Network Simulation

Analytical techniques are useful to explore the behaviour of routing algorithms but it becomes
more difficult to do so with complex protocols acting on arbitrary topologies. Network simulation
is a powerful tool which can be used for various aspects of research and development of routing
including analysis of protocols, understanding of behaviours and evaluating new ideas. In this
project, simulation is used as the main tool to evaluate the performance of routing algorithms. This
chapter will start by looking at different simulation approaches, then give a detailed description of
the architecture of the network components and finally outline how performance is quantified and
measured from the simulations.

3.1. Simulation Approaches

There are two main approaches to software simulation: discrete-event and cycle-based.

3.1.1. Discrete Event

In discrete event simulation, the state of the simulator is represented only at discrete points in
time, under the assumption that the time in between can be safely ignored. Depending on the level
of simulation, whether at hardware or application level, the choice of events provides a suitable
level of abstraction. For example, the process of a network node transmitting a packet of data
over a point-to-point link to another node is in entirety a very complicated procedure and might
include encoding of the data into electrical waveforms and performing error detection. However,
for a flit-level simulator these details can be ignored and simply abstracted as a delay, as they
make no difference to the higher level routing and flow control protocols. The process would
be represented as a transmitted packet event at time 7', then after some delay AT the packet is
received at the destination at time 7'+ AT as a second event. Each discrete event changes the
state of the simulation. Simulation proceeds by taking events in order from a list of pending future
events, sorted by time stamp.

3.1.2. Cycle-Based

In cycle-based simulation, all components are are tied to a global clock and are synchronously
updated each time step. The updates are generally performed in two phases. The first phase
reads some input state and computes some output values as a function of these. The second
phase copies each components output value into the inputs of the connected components. As an
example, consider a router where in the first time phase, packets would be read from inputs of
incoming links, and placed in output queues depending on the result of the routing function. In
the second phase, packets ready to be sent would be copied to the inputs of the outgoing links.
The critical invariants in cycle-based simulation are the order of evaluation of phases and the
order of evaluation of functions within a phase.
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3.1.3. Trade-offs

Discrete-event simulation has several key advantages; firstly that it can be used to model either
synchronous or asynchronous systems as events can be arbitrarily timestamped. Secondly, only
events occurring in the future are evaluated, hence idle components add no computational overhead
as they do in cycle-based simulation. In larger systems, this can give a significant performance
benefit. However, the effects are marginal for smaller systems (4 - 64 nodes) and although
network communication is often asynchronous, cycle-based simulation simplifies the complexity
as it allows some assumptions to be made about timing. Based on these reasons, the simulator
implementation for this project will use a cycle-based approach.

3.2. Simulator Architecture

To evaluate the performance of routing algorithms with wormhole flow control on arbitrary
topologies it is necessary to accurately model the communication behaviour at a flit-level. This
section will describe the architecture of the simulator and its implementation in software. The
design space for wormhole flow controlled interconnection networks is broad but the design
of this simulator aims to generalise where it can, but where particular design decisions or
assumptions have made, they are stated in the following sections. The following sections describe
the architecture in a software-implementation sense, in that some of the details may not apply to a
hardware implementation.

A cycle-based design lends itself to object-orientated approach as network components such as
routers and links can be represented by objects with specified inputs, outputs and functionality. A
network is represented by node and link objects, the arrangement of link connections between
nodes determines the topology. Each node contains a processor which acts as a source and sink
for packets, and a router which forwards or queues incoming flits to an output port or towards the
processor if it is the destination.

3.2.1. Router

The router is at the heart of the simulator. It implements the routing and flow control functionality
required to make successful communications across the network. The two main design decisions
for the simulator, as part of the router architecture, were to include virtual channels for flow
control and as a resource for some protocols, and also to use credit based flow control to provide
buffer management and back-pressure.

Input and Output Ports with Virtual Channels

Each router has a set of input and output channels which will be referred to as ports. Each input
and output port is divided into a set of v virtual channels. Physically this is realised as a set of v
buffers each with some control state. Virtual channels associated with an input port contain a flit
buffer commonly with capacity for around 4 flits, the control state for this maintains the following
fields. A state vector (G,R,0,C) records the global state of the router (G), which can be either
idle (I), active (A), waiting for credits (WC) or waiting for a virtual channel (WV). The output
port route (R) and output virtual channel (V) values reference the corresponding output port and
channel. And lastly, a credit count (C) is maintained which relates to the number of available slots
in the downstream flit buffer corresponding to port R and virtual channel V.

An output virtual channel differs slightly with a state vector (G,I,C); it contains space to buffer
a single flit as buffering needs only to be performed on input ports. It also maintains the same
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Figure 3.1.: A diagrammatic representation of a routers input and output ports with contained
virtual channels

global state (G) with the exception of waiting for a virtual channel, and also the same credit count
(C) as the corresponding input channel. Lastly, it maintains a reference to the downstream input
virtual channel (I) that it is forwarding flits to. Figure 3.2.1 shows a diagrammatic representation
of input and output ports with their contained virtual channels.

Credit-Based Flow Control

Credit-based flow control is used to manage the use of buffers to ensure that flits are not sent
unless there is space downstream to accept and buffer them. It works by an output virtual channel
in node n, maintaining the number of free entries in the downstream input virtual channel buffer
(C). When this is greater than zero, flits can be transmitted and the credit count decremented. At
the downstream node ny, the credit is returned back upstream when the flit leaves that buffer.
This credit contains the number of the virtual channel returning the credit. This process can be
thought of as n,, allocating buffer space to the transmitted flit with the credit. This space can only
be reallocated when the credit is returned. The size of input buffers must match the latency (in
cycles) of the time taken for a credit to be allocated and successfully returned. If there are fewer
spaces than this, the supply of buffers will be exhausted before the first credit is returned.

Credit-based flow control creates a concept of back-pressure. This is if a node has to block
traffic for a particular virtual channel, when the physical channel is used by another virtual channel,
it will cause the buffer at the previous node in the path to start filling up. This will gradually
happen for all preceding nodes in the path until all the flits along the path become blocked, unless
of course the blockage is resolved.

Router Components and Data Paths

The router is comprised of a set of input and output ports connected with a crossbar switch.
Decisions specifying the path flits take through the router are made by a routing function and the
virtual channel allocator. Figure 3.2.1 illustrates the arrangement of these components and the
connections between them.
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Figure 3.2.: A diagrammatic representation of a router showing the main components and the
connections between them

When a flit arrives at an input port of a router it is placed into the buffer of the virtual channel
specified as a parameter in the flit, this applies to head, body and tail flit types. The implementation
of the router has a non-blocking crossbar connecting inputs with outputs, so flits from each input
can be simultaneously transmitted across to their corresponding output ports. For each input
and output port, virtual channels are serviced on a round-robin basis. When a virtual channel is
serviced, the flit is read and if it is either a body or tail flit the output port (R) and virtual channel
(O) are read and if there is space, the flit is written to the specified output buffer. If the flit is a
header flit then the output port and virtual channel need to be determined before it can proceed.
As a header flit passes through a router, it can be thought intuitively as setting up connections
between input and output virtual channels, in doing so acquiring channel resources for subsequent
flits.

The output channel will always be decided by the routing function as it relates to the direction
it travels in the network. The virtual channel may either by dictated by the routing function
if it is necessary to prohibit deadlock, or automatically allocated by the router. To allocate a
virtual channel, one must be found that is both in the idle state (I) and with a full set of credits.
The last condition is not entirely necessary, but it prevents a dependency from being formed
between two flits sharing the same virtual channel in succession. The first condition ensures
the channel contains no flits from other messages as this is a necessary condition for ensuring
deadlock-freedom, which is proved in Section 2.3.1. If no virtual channel can be allocated the
global state of the virtual channel is set to WV. When flits are successfully removed from the
buffer, and the number of credits reaches zero, then the global state is set to WC.
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3.2.2. Processor

The processor acts to generate messages according to the traffic pattern and injection process,
and to consume messages sent by other nodes. It is connected to the router by its own input and
output ports (illustrated in figure Figure 3.2.1) which each have only a single virtual channel.
The processor transmits flits according to the same credit-based flow control scheme used on
inter-router links as the flits buffered in the processor input port may become blocked by the
switch if it is unable to allocate an output virtual channel on the router.

3.2.3. Links

Links are used both to connect routers together and the processor the router. Links are unidirec-
tional but are modelled to contain a second signal travelling in the opposite direction as the data
to transmit the credit messages back upstream. Links have an associated propagation delay in
cycles, modelling the physical propagation of electrical or optical signals along a cable or fibre. If
the delay is d cycles then the link can simultaneously carry d flits and d credits in either direction
at different stages along the journey.

3.3. Performance of Interconnection Networks

The combination of topology, routing algorithm and flow control determine the behaviour and
properties of an interconnection network. In order to assess the performance, two key metrics are
used: latency and throughput. To measure the performance using these metrics, a network must
be subjected to traffic workloads. Workloads can be driven by an application, as they would do
normally from recorded traces of real execution, or synthetically from statistical models.

3.3.1. Synthetic Workloads

Synthetic workloads are a simplification of that of real execution of applications, but aim to
capture the spatial and temporal elements of them. These are described by a spatial distribution
of traffic over nodes in a network, and a temporal distribution by an injection process. The
traffic workload used to evaluate routing algorithms in this project will be based on permutation
traffic and a simple bursty injection process as these are most flexible for a range of topologies.
More complicated statistical traffic models do exist [44], but are not as widely used and are less
applicable to arbitrary topologies.

Traffic Patterns

The spatial distribution of traffic in a network is described by a matrix A where each element
As,a describes the probability of node s sending a message to node d. Table 3.1 shows some
common traffic patterns. The most simple of these is uniform traffic, where each node has an
equal chance of sending a message to a random other node, represented by entries in the traffic
matrix as As; = 1/N. The other patterns are permutations where each node s transmits to a single
destination d, represented by a permutation function 7, such that d = 7 (s). Bit permutations
calculate each bit of the destination address d; as a function of one bit of the source address s;;
di = s¢;) @ g(i). In digit permutations, each radix-k digit of the destination address d, is a
function of a radix-k digit of the source address s,; dy = f(54(2))"-

'Digit permutations only apply to networks where nodes addresses can be expressed as n-digit, radix-k numbers
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Type Name Pattern

Uniform Random Asd =1/N

Bit permutation Complement | d; = —s;

Bit permutation Reverse d; = Sp—i—1

Bit permutation Rotation d; = s;+1 mod b

Bit permutation Shuffle di = Si—1 mod b

Bit permutation Transpose di = Si4b/2 mod b

Digit permutation | Tornado dy = sy + ([k/2] —1) mod k
Digit permutation | Neighbour dy = sy +1 mod k

Table 3.1.: Traffic patterns

Random traffic patterns are most often used to test network performance, but have limited use as
they distribute load evenly and can give misleading results. Permutation patterns are much better
to stress topologies and routing algorithms, for example the tornado is designed to work against
the locality properties of tori whereas the neighbour pattern exploits it. Several of the patterns are
motivated by commonly occurring workloads, such as the transpose pattern which is based on the
communication involved in a matrix transpose operation, and the shuffle permutation which is
based on the communication behaviour of the Fast Fourier Transform and sorting algorithms.

Injection Processes

An injection process determines the average number of packets injected per time period. The
most common injection process is called the Bernoulli process. It models injection with a binary
random variable X such that the probability of injection is equal to a process rate parameter r;
P(X =1) = r. Simply, it flips a weighted coin each time step and with probability r, injects a
packet.

Network traffic is often time-varying or correlated; characteristics not captured by the Bernoulli
process. It can be extended simply to capture time-variations with a Markov modulated process
(MMP). A MMP is used to modulate the rate of a Bernoulli process with the current state of a
Markov chain. A simple example is with two states: on and off, where the injection rate is r;
or O respectively. At each time step transitions can be made between states. Each transition has
associated probability that it is made. With two states the probability of moving to the on state
is « and to the off state is 4. This gives 1/« as the average time between busts and 1/0 as the
average burst length. For larger «, the transitions occur more frequently and the injection process
is often then referred to as bursty.

The injection rate of the two-state MMP can be calculated by considering the steady state
distribution between on and off states. Let x( be probability of being in off state and x; be the
probability of being in the on state. In a steady state we have cxg = S and since xg + 1 = 1,
the steady state probability of being in the on state is

o
Ir =
a+ 3
then the injection rate r of the two state MMP is
arq
rTr=7r1r1 = .
a+ 3
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The last element of this synthetic workload model is the lengths of the messages sent between
nodes. The simplest approach is to fix the length as a constant, or more realistically, the length
can be chosen probabilistically from a measured distribution of packet lengths.

3.3.2. Throughput

The throughput of a network is the amount of data accepted per unit time at each input port. A
given network topology with links of bandwidth b will have a maximum theoretical throughput ©
which can be achieved under perfect routing and flow control. This provides an upper bound on
the performance achievable with a given topology. The maximum theoretical or ideal throughput
is related closely to the channel load. The load 7. on a channel c is is defined as the ratio of
bandwidth demanded from channel c to the bandwidth of the input ports. Maximum throughput
occurs when one or more channels in the network become saturated. The maximum channel load
Ymax relates to the channel carrying the highest proportion of traffic in the network:

Ymax = MaX Ye.
ceC

Network saturation occurs when v« = b for some bottleneck channel c. The ideal throughput

of a network is then defined as 5

meax
Ideal throughput for regular topologies can be estimated by considering the load over the channels
of a bisection. For arbitrary topologies, and arbitrary traffic patterns, computing ypmax requires
finding the optimal distribution of packets across a network that minimises channel load. This can
be done by solving a multi-commodity flow problem.

A simple lower bound for yp,,x is calculated by the ratio between minimum channel demand,
the number of channel traversals required to deliver a set of packets for a given traffic pattern,
divided by the number of channels in the network, assuming the best case when all channels are
loaded equally.

@:

H min‘N ’
> _mnie b
Ymax = | C‘
An upper bound for an arbitrary traffic pattern A can be calculated by considering an ideal routing
function R, , which can balance load over all minimal paths P € R, , evenly, i.e. 1/|P| is
carried by each channel of each path. The sum over paths is weighted by A, ;. Ymax 18 then the
maximum load over all channels, bounded by

1 1/|Ryy| ifce P
< _ 7y
VmaX<A) = I?G%( N Z Z )\‘E’y Z { 0 otherwise
xEN yEN PGRz,y

3.3.3. Latency

The latency of a packet is the time taken to reach its destination, including the time the first header
flit takes to travel across the network 7}, and L subsequent flits to be transmitted and received at

the destination;
L
T="T,+ —.
h+ b
Latency is also effected by queueing delays from the flow control mechanism caused by multiple
packets arriving at a router travelling in the same direction, and from processing delays due to

router decisions.
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3.4. Simulation Measurements

To evaluate the performance of algorithms in terms of the latency and throughput metrics, it is
necessary to measure the run-time state of simulation process. The behaviour of the simulator is
non-deterministic as the traffic workload is randomly generated based on a seed value each run.
Because of this accurate statistical measurements must be made which measure the underlying
process to best estimate the values for the metrics. The accuracy of the measurement can be
assessed to ensure a rigorous approach.

3.4.1. Warm-up Period

Measurements are based on measuring a steady state process, that is one in which the statistics
are stationary and do not change with time. This ensures that systematic errors introduced by
some bias in the measurements or simulation can be kept at a minimum. The simulator starts with
empty buffers, so the first few packets traversing the network will experience little contention, as
more traffic is injected the contention will increase. The simulator reaches a steady state after
the level of contention remains at a constant level. The initial phase is called the warm-up period
and in this time, all events should be ignored. One way in which the length of this period can
be approximated is by collecting a set of samples, choosing an initial warm-up period either by
a guess or inspecting a graph, and performing a linear fit on the samples not included of the
warm-up period. If the line from the linear fit is approximately horizontal (gradient 0) then the
simulator is considered in a steady state, if not the warm-up period can be adjusted and the linear
fit recalculated.

Warm-up periods have been extensively researched within the statistical field of Monte Carlo
simulation. Possible more rigorous approaches are Klomogrov-Smirnov tests, comparison of
multi-chain quanitle distributions or Riemann Sums. The problem of estimating the length of a
warm-up period can be an art rather than a science, however for the purposes of the investigated
problem, the linear method proposed above is sufficient.

3.4.2. Steady State Sampling with Batch-Means

To measure the underlying process of the steady state simulation, the batch-means method can
be used to obtain a sequence of independent samples (batch-means) by aggregating a set of
successive measurements of the simulation into batches. This allows an accurate estimate of the
standard deviation of the underlying process which is useful to asses the quality of the sample
mean and the confidence intervals. Given a set of observations { Xy, X1, ..., X,,—1 } from a single
simulation run, k individual batches B;, of size s are created. If the number of samples n = sk,
then the batch means are defined as

Xsitj

for 0 < ¢ < k. The sample mean is then calculated then as the mean value of the batches:

e

-1
B;.
1

B =

el e

%

36



3.4. Simulation Measurements

Using each batch average and the sample average, the standard deviation o2 is estimated by
T,
~2 B_ 02.\2
= — B — B;)”.
1=0

Since each sample is the average over many different measurements, the variance between
batches is greatly reduced, which in turn reduces the standard deviation of the measurements.
Ideally, each batch should be independent from all others so the sample mean is not biased in any
way. In reality though, there may be some correlation between batches due to the expected high
auto-correlation of the underlying process due to the queued flits between batches. To reduce
this effect the size of the batches should be large. The sufficient number of batches is generally
recognised to be around 20-30, a trade-off between accuracy of estimation of our summary
statistics, and computational cost. For the experiments performed for this project, each batch will
consist of 1000 simulation cycles.

3.4.3. Confidence Intervals

Confidence intervals are used to assess the reliability of statistical measurement. For a particular
set of samples, it gives a range over which the true mean is contained with a given level of
confidence. Confidence intervals are calculated with two main assumptions: that the underlying
process is stationary, which we ensure with the warm-up period, and normally distributed, which
we can’t assume directly but the central limit theorem says that with a large number of independent
random variables, their sum will be approximately distributed. A 100(1 — §) percent confidence
interval bounds the range in which the actual mean B falls in in terms of the sample mean:

_ Oty _ - _ Ot
3_7175/2§3§3+M_

vk vk

The parameter ¢,,_1 5o of the error term is Student’s t-distribution.

3.4.4. Throughput

Throughput is measured by recording the rate at which flits are delivered in the network. For a
particular batch interval B;, samples are taken for flits delivered in the interval. The samples are
collected by each cycle, each input port adds a sample by incrementing a sample count by one if
a flit is received and by zero if not. The throughput is then the count divided by the number of
samples. As the offered traffic oA is increased the throughput should equal the demand, giving a
linear relationship until the network becomes saturated, where the rate at which flits are delivered
cannot be increased. Figure 3.4.5 shows an example throughput plot with confidence intervals.

3.4.5. Latency

Latency is measured by recording the number of cycles taken for each complete packet to be
delivered the moment it is generated by a processor. After a test interval has completed, any
measurement flits still in transit are recorded so not to bias the sample by excluding long-latency
packets. To profile the latency behaviour for a particular algorithm the offered traffic aA slowly
increased from O.

As the network becomes saturated (o« > ©) and the number of undelivered packets slowly
increases, the latency of each subsequent batch increases, indicating infinite latency. This means

37



Chapter 3. Network Simulation

0.8

Throughput

UPDOWN
LASHTOR
0.7 BEGMENT :--%---

0.6

04 |

Accepted (flit/cycle/node)

02

4
e

T T T T T

St

—“‘%A——A——A—:u‘
. 4“4444“},4;6“4#“}““;
“ A
I e R

e ————4——4—‘*————4—4“4

s
[
[T

P

T

o

B S

“M;‘“m‘

1
0.15 0.2 0.25 0.35

Offered traffic (flits/cycle/node)

o
w

0.4

Figure 3.3.: An example throughput plot with marked confidence intervals, showing average
accepted traffic as a function of offered traffic.
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Figure 3.4.: An example latency plot with marked confidence intervals, showing average latency
as a function of offered traffic.

the simulation state is no longer steady and the confidence interval for the estimated average
grows proportionately. When analysing latency plots, we are interested only when the simulation
state is steady and the latency is constant, after this point the results mean very little. Figure 3.4.5
shows an example latency plot with confidence intervals.

3.5. Testing & Verification of Implementation

To ensure the implementation of the simulator architecture described in this chapter was function-
ally correct, different methods of testing were used throughout development. The architecture of
the simulator is modular and scalable which translated easily into an object-orientated style. This
meant that the structure could be expressed with generic classes such as Node, Router, Processor
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and Link, enabling a network to be constructed by connecting Nodes together with Links. In
terms of testing, it meant that the functionality of these simulator components could be scrutinised
independently of the others.

In the initial stages of development, a graphical debugging tool was created, which enabled
the simulation to be stepped through one cycle at a time and displayed for each node, the state
of all input and output ports with their virtual channels for the router and processor. This was
invaluable in developing tricky functionality such as virtual channel allocation and message
arbitration. Using this tool it was reasonably straight forward to verify the correct functionality of
the simulators components.

The second stage of development was to implement the topology generation and routing
algorithms. Both of these aspects could be considered independently of the simulator architecture,
by defining strict interfaces to the simulator for their functionality. In developing the topology
generation, GraphViz2, a graph visualisation tool made verification straight forward. Verifying
the correct behaviour of the routing algorithms was more difficult. The best approaches to doing
this were to ensure all packets are delivered and that no deadlock occurred, validation against
simple cases worked out with pen and paper, and analysis of the latency and throughput plots
against their expected behaviour.

2http ://www.graphviz.org/
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Chapter 4.

Implementation & Results

This chapter forms the analysis of the algorithms described in Section 2.3. It includes all of the
new work involved with this investigation. It is divided into two sections: the first is a discussion
of the implementation details of the two algorithms, and the second presents the results of the
empirical study of their behaviour.

4.1. Implementation of Algorithms

Implementing the LASH-TOR and SR algorithms as described by their respective papers, provided
an opportunity to gain a detailed understanding of their functionality and to scrutinise their details.
The following section outlines the issues highlighted by this.

4.1.1. LASH-TOR
Computational Cost

The most striking feature of LASH-TOR is how computationally intensive it is. The paper [36]
claims the full algorithm has a complexity of O(N?), but even just considering step 2 of the
algorithm, this cannot be true. The best known result for all-pairs shortest path is with the
Floyd-Warshall algorithm [17] which runs in O(N?3). Furthermore, the Floyd-Warshall algorithm
would not be sufficient as LASH-TOR requires all minimal paths between source-destination
pairs to be found; calculating all-pairs all-shortest paths will be significantly more than O(N3).

The LASH-TOR implementation for this project uses the JGraphT! library to calculate &
shortest paths between a pair of nodes, for which the complexity is O(kN?). It takes several
hours to compute 5 shortest paths (from which minimal ones are picked) for all pairs of nodes for
a 128 node network?. This is not surprising as the complexity is approximately O(kn*).

Routing Function

The update to the routing function in step 3b is not at all simple, and there seems no obvious
way to implement this with distributed routing tables. As an example to illustrate this, take a
source-destination pair (ns, ng) having {L', S}, defined where m; = {ns,...,ng}. m; will
also contain other source-destination pairs (ny, ng ) such that {ny, ...,ng} C m;. Step 3b may
choose a shortest path m; between ny and ng not contained in m;. This means that the port and
virtual channel references for nodes in the path m; for destination ng will differ from those on the
path m; to ny.

As a solution in the implementation, routing decisions are made from a global list of all source-
destination pairs, where each pair has {L’, S},, defined, instead of routing tables at each node.
This means that the routing function takes an additional source node argument.

'"http://www. jgrapht .org/
In which there are 1287 — 128 = 16256 source-destination pairs
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Layer Balancing

With regards to step 6 of the algorithm (Section 2.3.4), balancing layer load by picking pairs
assigned only to the first layer and assigning them randomly to another layer seem a bad heuristic
to use because in practise the second layer also often contains many complete paths. A better
approach would be for each source-destination pair assigned to a single layer, assign it to another
layer with the least load, repeating this until no more pairs are subject to move. This approach was
included in the implementation of LASH-TOR. Section 4.2.8 shows the result of this alteration by
a comparison with and without this balancing phase on some example topologies.

4.1.2. Segment-Based Routing
Problems with Description

Implementing SR as described by the paper revealed the following problems>.

1. The node randomly chosen to begin with must be part of a cycle, otherwise no starting
segment can be found from it. To fix this, if no initial starting segment can be found, another
node is randomly chosen.

2. The termination condition in the compute_segments method needs to immediately
follow the call to next_not_visited.

3. In the method find, the node given as an argument should only be set as tvisited and
added to the segment if it is not visited, as regular segments start and end on nodes already
contained in segments.

Optimising Segment Discovery for Irregular Topologies

A follow-up paper, proposing the application of SR to Ethernet [28], describes how SR can be
applied to random irregular networks. The aim is to reduce the number of unitary segments
by making segments as short as possible, which is achieved by computing segments by using
the shortest distance to any already visited switch as a premise. No further description of this
seemingly simple process is given, but there is no obvious simple solution.

As a solution for the implementation, two situations are considered: firstly, when a starting
segment must be found and secondly, when a regular or unitary segment must be found. For the
discovery of a starting segment, any link can be chosen initially from the starting node. After
this, links are chosen on the basis of the link’s target node’s distance from the starting node. This
is calculated using a shortest path algorithm. Essentially, this produces the shortest path from
a random neighbour of the start node, to the start node, using links and nodes not belonging to
any segments. To stop paths tracing backwards along the path of the segment, shortest paths
are calculated on a copy I’ of the network I, and links are removed from I’ as they are added
to the segment. When a segment is successfully or unsuccessfully found, edges removed in the
procedure are added back into .

For regular and unitary segments, links are chosen on the basis of the minimum distance to
any node belonging to a segment within the current subnet and are removed from I’ for the same
reason when they are added to a segment. This involves computing the shortest path between all
destination nodes of the unvisited links for the current node, and all of the nodes in all segments in

3These problems relate directly to the pseudo-code presented in the paper
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the current subnet. This extra processing incurs a significant penalty as there can be many shortest
paths calculations for each segment, for regular and unitary segments, this grows proportionally
with the size of the subnet. Section 4.2.7 shows the effect this extra processing has on the number
and type of segments found for a mesh topology.

4.2. Simulation Experiments

This section presents the experiments performed with the network simulator to compare the
performance of LASH-TOR and SR. DOR and Up*/Down* routing are used as benchmark
base-cases for regular and irregular topologies respectively.

4.2.1. Hypothesis

The premise of performing these experiments is to build a detailed picture of the two algorithms
by evaluating them under a range of parameters. The main hypothesis is that random topologies
are not homogeneous, and that in fact irregular networks may posses particular properties that
effect, positively or negatively, the behaviour of routing algorithms.

4.2.2. Methodology

In order to test this hypothesis, the performance of LASH-TOR and SR will be analysed on
different classes of topologies from regular to random, as described in Chapter 2. For each class
of topology, network parameters such as the number of available virtual channels are also key
variables to the experiments.

Plots

The analysis of routing performance will be based on plots of average latency as a function of
offered traffic. It is not useful to look also at throughput as it is a unit-less quantity, expressed in
terms of flits and gives little more information that a latency plot. When the network is operating
at an unsaturated level (o« < ©), latency will be constant and throughput will equal offered traffic.
When o > ©, latency will become infinite which is represented by the vertical asymptote, and
throughput will reach a threshold value which is represented by a horizontal asymptote.

As a note, both of the papers for SR and LASH-TOR [27, 36] analyse the performance of the
algorithms using combined latency and throughput plots, where latency is given as a function
of throughput (accepted traffic). This approach is wrong for two important reasons [7]. Firstly,
it does not show that a traffic source queue is considered by the measurement. If it did, latency
would be infinite at all offered traffic levels above saturation. In several of the plots the curve
confusingly wraps back around because the network becomes unstable above saturation due to
the throughput decreasing. Secondly, this instability means that the plot no longer represents the
steady state performance of the network because source queues will start growing without bound
after saturation. In a steady state, source queues are uneffected by changes in offered traffic and
are of infinite size.

Variable Parameters

The two key variables in the experiments are the routing algorithm and the topology. The following
results are divided into four sections regarding each class of topology: regular, degenerated regular
and irregular. Each of these sections will look in detail at the performance of the algorithms
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when run with the class of topology. For each class, results are presented for different network
parameters such as size, traffic patterns and number of virtual channels. Each of these parameters
are important to the resulting behaviour, but each additional variable increases the number of
possible results, which cannot all be presented in this project. The following results aim to present
a best selection of these, in order to give a detailed overview of performance.

The following parameters remain fixed throughout all experiments. Link delay, the number of
cycles a flit takes to travel along a link is 5, all virtual channel input buffers have a capacity of 5
flits (as this equals the round-trip time for buffer allocation) and all packets are a constant size of
20 flits, which makes little difference as smaller packets would just offset the saturation point.

4.2.3. Implementation Issues

Unfortunately, there was an issue with the implementation of SR, causing it to deadlock, that
could not be resolved within the time-scales of this project. The deadlock occurs only for larger
irregular topologies, making it very difficult to identify the cause of the problem. Specifically, this
affected all three types of random graph networks, but only the larger (64 node) d-regular and
Barabasi-Albert classes. Where results for SR could not be obtained, ones for Up*/Down* are
substituted instead. This does not give as comprehensive comparison as aimed, but it allows for a
full presentation of topologies where in some cases just the performance of LASH-TOR analysed.

Although the implementation of SR contains this unresolved issue, the following results that
include SR are still valid for the following reasons. Firstly, the segmentation of a network can
easily be verified by hand on small networks, and for larger networks it is possible to check that
each segment is a valid set of nodes and links and that the set of segments covers the network
correctly. Secondly, it can again be verified by hand that the bidirectional turn restrictions are
placed correctly and that their effect is correct. Thirdly (and most confusingly) the CDG for the
paths between all source-destination pairs found using the dual graph is always acyclic, which
should indicate the absence of any dependencies that could cause deadlock. For these reasons it is
clear that the deadlock is caused by a very subtle issue, that has little effect on the performance
characteristics of the algorithm for the topologies that do not cause deadlock.

4.2.4. Results for Regular Topologies

Very few results in the literature surrounding universal routing compare the algorithms against
topology-specific algorithms like DOR. Also, when regular or degenerated regular networks are
used, they are often tested only with a uniform traffic pattern, which does little to test the overall
properties of the algorithm. This first section of results aims to compare the performance of
Up*/Down*, SR and LASH-TOR against DOR, which acts as the base-case, on mesh networks
under different traffic patterns to provide a firm basis for the overall analysis.

Affect of Traffic Patterns in Meshes

The first set of results, shown in Figure 4.1, show the effect of different traffic patterns on
performance for a 8-ary 2-mesh topology of 64 nodes. The traffic patterns were chosen as they
posses unique behaviours. Uniform traffic distributes load evenly over the network, transpose
is a permutation reflecting the communication behaviour when performing a matrix transpose
operation, shuffle is a permutation reflecting the behaviour of sort operations and the tornado
works against the locality properties of the mesh. Uniform can be viewed as a base-case, transpose
and shuffle as average-case and tornado as worst-case.
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Figure 4.1.: Results for routing algorithms on a 8-ary 2-mesh with different traffic patterns. LASH-
TOR uses 3 layers to assign all minimal paths, DOR, Up*/Down* and SR use no
virtual channels. DOR routing is used here as a basis for comparison.

A mesh topology is used throughout as DOR is deadlock free*. Its size is chosen for three
reasons: the number of nodes must be a positive power of two for the permutation traffic patterns,
a network of 256 nodes takes prohibitively long to simulate and smaller networks offer little
extra insight into performance. For these experiments, 3 virtual channels were made available to
LASH-TOR so all 4032 source-destination pairs could be assigned normally, for the other three
algorithms no virtual channels were available for flow control. For this topology, SR routing
removed 105 turns, based on 1 starting segment, 40 regular and 8 unitary segments.

The results show that Up*/Down* routing consistently performs the worst in all experiments,
which is expected based on its utilisation of the network. Although its performance is similar to
SR with the tornado traffic pattern which saturates the network at much lower traffic levels than
the other patterns. Apart from uniform traffic, LASH-TOR out-performs DOR all cases. This is
most likely due to the way uniform traffic distributes load evenly over the network, extenuating
the penalties incurred with SR turn restrictions, as opposed to permutation patterns where each
node has a fixed destination. Although both LASH-TOR and DOR route along minimal paths,
LASH-TOR has the benefit of reduced traffic congestion as the 3 virtual layers each provide some
level of flow control by separating the different flows.

“DOR is not deadlock free for tori as the wrap-around links mean deadlock can occur within a dimension
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Figure 4.2.: Results for the same experiments presented in Figure 4.1 but with 3 virtual channels
available to DOR, Up*/Down* and SR.

Impact of Virtual Channels

The second set of experiments, shown in Figure 4.2, are the same as the first, but this time 3 virtual
channels are available to all of the algorithms. This provides DOR, Up*/Down* and SR with extra
flow control to help prevent flows of traffic from blocking others when passing through switches.
It gives LASH-TOR no extra advantage. The results clearly show that DOR performs best, and by
a significant margin in all cases. The performance of SR is also improved substantially, either
matching or out-performing LASH-TOR in all cases.

To look more closely at the effect of virtual channels on the behaviour of SR and LASH-TOR,
Figure 4.3 shows the performance of the algorithms on an 8-ary 2-mesh with 1 to 5 virtual
channels available. With just one virtual channel, LASH-TOR assigns minimal paths fitting in a
single layer to the Up*/Down* layer and any requiring more than one, to Up*/Down* paths in
this layer. With two virtual channels, many more minimal paths can be assigned, then for 3, 4 and
5 layers all paths can be assigned within these, offering marginal extra performance benefit. The
behaviour of SR is similar, in that a large difference is made with the addition of one channel,
then with 3 or more, little or no benefit is given.

4.2.5. Results for Degenerated Regular Topologies

The second set of experiments are performed on degenerated regular topologies. These are created
by removing some percentage of links, ensuring the network remains connected, i.e. that there
is a single connected component. In the performance evaluation of both SR and LASH-TOR,
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Figure 4.3.: Performance of SR and LASH-TOR on an 8-ary 2 mesh with increasing numbers of
virtual channels.

the results for degenerated topologies only consider up to 5% link failures. The results given
in this section aim to build a more general picture by considering between 5% and 50% link
failures. Topologies with higher failure percentages are not presented as none of the original
regular properties will be retained. The resulting degenerated topologies are used to evaluate
the performance of SR and LASH-TOR. Additionally, results are given with 1, 2 and 3 virtual
channels available for each algorithm. The transpose traffic pattern is used throughout as it gives
a good average-case.

The first set of results, presented in Figure 4.4, show the performance of the algorithms on a
degenerated 8-ary 2-mesh. The second set, presented in Figure 4.5, are based on a degenerated
8-ary 2-cube (64-node torus network). There is little difference between the results of the two
topologies; the algorithm’s relative performances remain very similar. This is not unexpected as
mesh and torus networks are very similar, we can see though that the extra wrap-around links in
the torus improve the saturation level by a small amount in each case. Consistent with the results
for the regular mesh topology, with one virtual channel LASH-TOR out-performs SR, but with
more than two virtual channels available, SR out-performs LASH-TOR in nearly all cases, often
by a large margin.

4.2.6. Results for Irregular Topologies

This final section presents results for random irregular topologies; specifically for the three
classes of random graph, introduced in Chapter 2, each with unique properties. The aim is to
test the main hypothesis and analyse the effect these properties have on the performance of the
routing algorithms. Apart from different algorithms, results are presented for three variations of
parameters: network size, traffic patterns and number of available virtual channels.

The properties of the random graph models used are more pronounced as the number of nodes
increases, but as the size of the network is bounded by the feasible run time of the experiments, a
maximum size of 64 nodes is presented. 32 node networks are also presented as a comparison, but
it is expected for this size that the behaviour of the algorithms will be much more similar across
the classes than for 64 nodes. Table 4.1 outlines the parameters used for the topologies and the
resulting number of links. Two traffic patterns are used: uniform again as a base case, and random
permutation as it is equivalent to other permutations as there is no regularity or locality in random
topologies.
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Figure 4.4.: Results showing the performance of SR and LASH-TOR with 1 to 3 available virtual
channels for an 8-ary 2-mesh with increasing levels of faults.
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4.2. Simulation Experiments

Erdés-Rényi d-regular expander Barabasi-Albert
Nodes | p | Links | Nodes | d | Links | Nodes | m | Edges
32 0.1 118 32 48 32 2 60
32 0.15 | 162 32 96 32 8 192
64 0.1 | 430 64 96 64 4 240
64 0.15 | 628 64 192 64 16 | 768

AN LW N W

Table 4.1.: The parameters used to construct the random graphs with the resulting number of
edges.

Erdos-Rényi Graph

Due to SR deadlocking on both 32 and 64 node Erdés-Rényi topologies, the results shown in
Figure 4.6 and Figure 4.7 present performance of Up*/Down* and LASH-TOR instead. The
behaviour of both algorithms is very consistent throughout. For a single virtual channel, there is
little difference in saturation level, but for 2 and 3 virtual channels, the performance of LASH-
TOR improves significantly. For both 32 and 64 nodes, the benefit is larger for the greater edge
probability p of 0.15 instead of 0.1. This is because the network becomes more connected, which
cannot be exploited by Up*/Down, but allows LASH-TOR greater freedom in choosing its shortest
paths that minimise the number of layers required.

With the 64 node topology, it has the effect of saturating Up*/Down* up to 3 virtual channels
at offered traffic of less than 0.05 for both traffic patterns, compared with the 32 node case where
it saturates at just less than 0.1. This is due to Up*/Down*’s poorer utilisation of the network
for 64 nodes. Interestingly, the performance of both algorithms is very similar for both uniform
and permutation traffic. The only odd result is for the 32 node topology with p = 0.15 and
permutation traffic, where LASH-TOR with 2 virtual channels saturates at a higher traffic level
than with 3, but this is likely to be an anomaly.

d-regular Expander Graph

The key property of an expander graph is that nodes are well connected to the rest of the graph, i.e.
any other nodes are always only a short distance away. Figure 4.8 shows the results for SR and
LASH-TOR on a 32 node, 3 and 6-regular random graph with uniform and permutation traffic.
The behaviour shown is again consistent with that of the degenerated regular topologies, in that
SR easily out-performs LASH-TOR with 2 and 3 virtual channels. Figure 4.8 (c) shows some
different behaviour, where saturation is very similar for both algorithms with 2 and 3 virtual
channels. In both topologies, permutation traffic gives best performance.

Figure 4.9 shows results for 64 nodes, but this time with Up*/Down* substituted with SR. The
main difference between these results, and those for the Erd6s-Rényi graph results in Figure 4.7,
is that the a third virtual channel is much more beneficial for LASH-TOR. This is because the
64 node d-regular graph is less connected than the 64 node Erd6s-Rényi graph, so less paths are
available to LASH-TOR, increasing required number of the layers.

Barabasi-Albert Graph

A Barabasi-Albert random graph is created with a preferential attachment mechanism which
creates highly connected sub groups of nodes, called clusters. A clustered structure may also
implies good communication as it can be viewed as a 2-level hierarchy where each node in the
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Figure 4.6.: Results for a 32 node Erdds-Rényi graph with uniform and permutation traffic
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Figure 4.7.: Results for a 64 node Erd6s-Rényi graph with uniform and permutation traffic
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Figure 4.8.: Results for a 32 node expander graph with uniform and permutation traffic
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Figure 4.9.: Results for a 64 node expander graph with uniform and permutation traffic
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Figure 4.10.: Results for a 32 node Barabési-Albert graph with uniform and permutation traffic
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Figure 4.11.: Results for a 64 node Barabési-Albert graph with uniform and permutation traffic
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Random walk Shortest path
Topology Subnets | Start. | Reg. | Uni. | Subnets | Start. | Reg. | Uni.
64 mesh 1 1 8 23 1 1 40 8
64 torus 1 1 11 52 1 1 44 20
64 dmesh (5%) 1 1 7 25 1 1 38 7
64 dmesh (50%) 8 1 5 10 8 1 10 5
64 dtorus (5%) 1 1 3 20 1 1 43 18
64 dtorus (50%) 3 1 14 13 3 1 25 5
32 ER (p=0.1) 1 1 11 15 3 1 18 9
64 ER (p=0.1) 1 1 10 77 1 1 54 97
32 EX (d=6) 1 1 16 39 1 1 54 97
64 EX (d=6) 1 1 1 41 1 1 49 76
32 PR (m=8) 1 1 0 67 1 1 29 94
64 PR (m=8) 1 1 5 110 1 1 60 | 270

Table 4.2.: A comparison of the basic segmentation algorithm where segments are discovered by
performing a random walk on the network, against the shortest path approach where
the path is chosen by the shortest distance to existing segment elements. The table
shows for both approaches, the different distribution of segments found on a range of
topologies. Mesh and tori are square and 2-dimensional. The following shorthand is
used dmesh and dtorus are degenerated mesh and torus networks with some percent-
age of faults, ER=Frdds-Rényi graph, EX=expander graph and PR=Barabasi-Albert
preferential attachment graph.

same cluster is a short distance away, and each cluster is only a short distance away. Figure 4.10
shows the results for SR and LASH-TOR on a Barabasi-Albert random graph, which are again
very similar to those of the degenerated regular (Figure 4.4, Figure 4.5) and d-regular (Figure 4.8)
topologies. This is expected as for only 32 nodes, the structure of these graph classes will not be
particularly different.

Figure 4.11 shows the results for Up*/Down* and LASH-TOR on 64 node Barabési-Albert
networks. They are again very similar to those of the Erd6s-Rényi topology (Figure 4.7), except
for the performance of LASH-TOR with 2 and 3 virtual channels under permutation traffic, where
in the Barabdsi-Albert network, it is not improved with the third virtual channel.

4.2.7. SR Segment Searching

For SR to be better applied to irregular topologies it is proposed in the paper [28] that segments
should be made as short as possible to reduce the number of unitary segments, as these generally
incur the most turn restrictions. This is achieved by choosing links in a segment path that are
closest to a node already belonging to a segment, as opposed to choosing links randomly and
essentially performing a random walk. An outline of the implementation of this is given at the
beginning of this chapter. Table 4.2 shows the resulting number and types of segments discovered
by SR with and without this change to the algorithm. It clearly shows that the number of unitary
segments are reduced as more regular segments are found. In the simple random walk case,
between 0 and 16 regular segments are found, whereas between 10 and 60 with extra shortest path
calculation.
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4.2.8. LASH-TOR Layer Balancing

After shortest paths have been calculated and assigned to layers, a phase of layer load balancing
is preformed. This is described in detail at the beginning of this chapter. For an 8-ary 2-mesh
with 4 available layers, without balancing, the 4032 source-destination pairs are assigned to only
two layers. The load on each layer directly corresponds to the number of edges in each of the
associated channel dependency graphs. The CDG for layer 1 has 13322 edges and the CDG for
layer 2 has 3039 edges. When layer balancing is used, the two other available layers are used,
with the CDG of layer 1 containing 11634, layer 2 7619, layer 3 7619 and layer 4 7619.

This distribution is expected as all paths assigned to two layers will begin in layer 1 and cannot
be moved. The other 3 layers are very equally balanced due to the number of length 2 paths that
introduce a single edge in a CDG. This kind of result from the balancing phase is common to all
of the considered topologies.

4.2.9. Conclusions
Validity of the Hypothesis

The main hypothesis was that the different properties of random graphs will effect the behaviour
of the routing algorithms. It it clear from the results presented that this does not hold and little
can be concluded about the effects of the different properties of random graphs. There are two
likely reasons why this is true. The first is that the size of the random graphs are relatively small.
The properties of random graphs such as clustering and high-connectivity apply asymptotically
and apply only weakly for small graphs. Repeating the experiments on graphs with hundreds
or thousands of nodes could yield far better results, but this would of course require a simulator
capable of such large networks. The second reason is that SR and LASH-TOR show little relative
differences between graph classes because, fundamentally, they operate in very similar ways by
routing along minimal, or near-minimal paths. For more pronounced effects, experiments could
be performed with routing algorithms of different natures.

From this we can conclude that small random graphs of up to 64 nodes are essentially equivalent
in terms of their effect on their behaviour on routing. It remains though that for much larger
networks, such properties may well have an affect, and as parallel architectures continue to
develop, we may find they come into play.

Affects of Virtual Channels

The most interesting insight these results have given is the effect that virtual channels have on
the performance of SR and LASH-TOR. The point of SR is not to use virtual channels to break
deadlock, which means that is more flexible in terms of the systems it can be applied to. When
SR operates without any virtual channels, we see the kind of comparison shown in the results in
Figure 4.1, where SR is vastly out-performed by LASH-TOR which uses 3. However, when more
virtual channels are made available to SR, the improved flow control that these provide means
that it’s performance is increased beyond that of LASH-TOR’s. This behaviour is illustrated by
the results in Figure 4.2.

The performance of LASH-TOR may be better than that of SR, but only when SR has no virtual
channels available to it. These results indicate that it would always be beneficial to use SR over
LASH-TOR as there would be some number of virtual channels available, and obviously never
the opposite way. LASH-TOR could compensate for the virtual channel performance boost given
to SR, by expanding each layer to v virtual channels to improve the flow control. This would
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almost certainly improve the performance of LASH-TOR up-to or beyond that of SR with an equal
number of virtual layers, as all paths are routed minimally, unlike SR. It would though, require v
times the number of required layers, virtual channels to do this, which would be prohibitive to the
use of LASH-TOR in many systems.

Algorithm Enhancements

Lastly, both of the extra features implemented for SR and LASH-TOR gave clear benefits to their
performance. For SR’s improved segment finding algorithm, it is clear from the results presented
in Table 4.2 that this is an effective method. However, because of the overhead incurred in the
computation involved with this, it is not in any way scalable and unsuitable for large systems or
systems with limited resources. The evaluation in the following section proposes some possible
ideas to improve the cost of this.

In contrast, LASH-TOR’s layer balancing phase has a minimal computational cost and produces
good results. It is very simple though, and only balances paths which are entirely assigned to a
single layer. This could be improved by as it is possible to include sub-paths in the balancing.
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Chapter 5.

Evaluation

The aim of this project is to investigate and explore current approaches to routing in irregular
processor networks. In Chapter 1, six objectives were set out in order to achieve this. The main
objectives amongst these were the implementation of the algorithms in a simulation framework
and evaluation of their behaviour and performance through a detailed empirical study. This chapter
details the current status of the project by evaluating its successes against the original aims. It will
also detail possible future directions, based on the work completed.

5.1. Successes

5.1.1. Research & Implementation

The key successes of the implementation aspects of this project were the network simulation tool
and the routing algorithms. The simulation tool was critical in gaining a complete understanding
of the intricacies of interconnection networks. Designing it in a modular and extensible way,
meant that it was straight forward in the early stages of the project to play around with the
functionality and implementation of different routing algorithms, topologies, and to see the effect
that different network and simulation parameters have on run-time behaviour. For instance, by
implementing a simple algorithm that routed along minimal paths, it was significant and very
satisfying to see that it deadlocked in some situations in the simulator.

This functionality of the simulator was vital in the implementation of the more complex
algorithms LASH-TOR and SR. Again, implementing these meant that every detail of their
descriptions had to be scrutinised, which gave an in-depth understanding of their composition.
This process also highlighted a number of issues in their design and even problems and errors
with their descriptions. The implementation of both the simulator and routing algorithms were not
at all trivial as the nature of a network system is inherently complex. Many components operate
in parallel with each other, each with its own complex functionality.

One of the most difficult aspects was identifying and fixing implementation bugs. In the early
stages of the simulator, these related to issues like the allocation and state transitions of virtual
channels. At this stage though, it was possible to step through simulation and inspect the states of
components such as that of input and output ports. As the simulator grew more complex and with
the implementation of LASH-TOR and SR, it became much harder to track-down and fix problems.
This difficulty resulted in a problem with SR, causing it to deadlock only in certain large random
topologies. With symptoms of the problem occuring only in networks of 64 nodes and with
hundreds of links, there is no straight-forward way to address the problem. Consequently, due to
this and the time scales of the project, it could not be resolved. Although the SR implementation
was not entirely successful, the issue highlights well the complex nature of deadlock in routing
algorithms and why it remains the central focus of research into routing.

In terms of evaluation against the project objectives, both of these initial implementation stages
of the project were underpinned with a great deal of research and investigation, before, and
continuing throughout. This involved the surrounding literature in academic papers, text books
and the Internet, and hence the research and literature review aim was, in that sense, achieved
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successfully. The implementation of the simulator was also successful, and implementation of the
algorithms as described was partially successful.

5.1.2. Experimentation and Analysis

It was not until mid-way through the experimentation phase of the project that the problems
with SR presented themselves. This was a serious problem as it meant that four sets of results
comparing LASH-TOR against SR could not be obtained. In order to present the best analysis
without SR, Up*/Down* routing was substituted as a comparison with LASH-TOR.

Even with these problems, the set of results obtained from the experiments were comprehensive
and informative. They showed that the hypothesis made about the effects of the properties of
random graphs did not hold, and the conclusion was made, that for small networks, random
topologies are essentially homogeneous. The results gave a separate and important insight into
the effect that virtual channels have on the performance of SR. In particular, that given the same
number of virtual channels as LASH-TOR, its performance is generally much better. This is
significant as algorithms using turn prohibition or virtual channels to break deadlock are not often
evaluated against each other. Specifically, no comparison has yet been made between LASH-TOR
and SR, which essentially represent the best performing algorithms in these two categories.

The experimentation also included a brief analysis of the enhancements made to each of the
algorithms. This did not contribute to the conclusion of the hypothesis, but it helped to illustrate
the details and nature of their behaviour, particularly for SR, where a seemingly simple statement
made in the original paper, turned out to be highly computationally intensive.

Even with the problems experienced with SR, the obtained results were successful in that
they presented a comprehensive analysis of universal routing algorithms. The conclusions made
identified key aspects within the results. They were reinforced by the discussion of the details of
the algorithms, highlighting primarily the computational and centralised nature of both algorithms.

5.2. Further Work

5.2.1. Experimentation

There are a two immediate changes that could be made to improve the quality of the results.
Firstly, to increase the confidence in those obtained on random topologies it would be beneficial
to average results over a set of perhaps 10 or more instances of a topology class, each with a
different seed value. In doing this, a more general picture would be given of the properties of a
topology rather than a single instance, which could by itself produce anomalous results. Secondly,
as described in the conclusion of Section 4.2, running the tests for much larger networks of 128,
512 or 1024 nodes would give a much better impression of the characteristics of the topologies.
This could be achieved either by rewriting the simulator to optimise its performance, perhaps as
event-driven rather than cycle-based, or just to provide much more computing muscle (somewhat
ironically) by running it on a HPC system.

Ideally, it would be better to entirely move away from software simulation and implement
and test the routing algorithms in real systems, as this would provide a true evaluation of their
performance, rather than with a large set of assumptions and abstractions in a simulator. Such an
approach may in fact be possible as the Bristol-based company XMOS!, who design multi-core
processors, have recently developed a new board with 16 of their 4-core chips connected together,
giving a 64-core system. Each chip runs 8 hardware threads so it would be possible with this

"http://www.xmos.com/
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system to implement, for example, SR routing on perhaps 4 of the threads, and use the others
to generate traffic and monitor the performance of the system in real-time without effecting the
routing.

5.2.2. Improvements to Algorithms

The obvious next step in any work continuing from this project is to implement changes to the SR
and LASH-TOR algorithms. The following points suggest areas where they might be improved.

LASH-TOR

e Adding adaptivity to R. The implementation of LASH-TOR for this project routed
obliviously along minimal paths. This approach to routing does not balance load well or
react dynamically to changes in the network. It would be interesting to see the effects
that adaptivity in LASH-TOR’s routing function R would have on its performance both in
preprocessing and operation.

¢ Virtual layer balancing. The description given by the paper of the process of balancing
the load over virtual layers considers only paths assigned to a single layer. It could be
improved by considering all sub-paths split across layers.

e Improve base-line routing algorithm. When it is not possible to assign a path to the
set of available layers, it is assigned to a separate layer using paths determined by the
Up*/Down* algorithm. A straight-forward performance improvement would be to use a
different algorithm, not dependent on virtual channels. For instance, SR could be used.

Segment-Based Routing

e Improve segmentation. From the issues outlined by the discussion of SR’s segmentation
algorithm, it is clear that there is room for a great deal of improvement. The most significant
issue is in reducing the computational cost of discovering segments in random topologies.

e Optimise the placement of restrictions. Currently, restrictions are placed within segments
randomly, but it could be beneficial to optimise against a heuristic based, for example, on
latency or throughput. Also, the selection of the start node is also random; maybe this too
could be improved.

e Adding adaptivity to R. As with LASH-TOR, it would be interesting to see how well
adaptivity could be added to SR and the effect it would have on its performance.

e Path selection. Whether the algorithm is minimal, or non-minimal the preprocessing
phase of SR gives a constrained graph on which any paths can be taken and will not cause
deadlock. Path selection could be improved, for example, by optimising link use over all
paths.
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Appendix A.

Proofs

A.1. Theorem 1

Every network of size n and maximum degree ¢ must have a diameter bounded by
o _logIN|
log(6 — 1)

Proof. This proof is adapted from [34]. Suppose we have a network I = (N, C') of maximum
degree ¢ and size | NV|. Starting from any node n € N, in one hop we can reach at most J nodes.
In two hops, we can reach at most § - (0 — 1) nodes. In k hops, we can reach at most

k—1
; (f—1DF—-1 _6-(6§—1)F
1 §-(6—1)Y=1+0- <
+ZZ; ( ) * f—-1)—-1 = 62

This has to be at least | N| to ensure n can reach all other nodes in /N within & steps. Hence,

-1k > (d—dQ)n
klogs—1(6 —1) = logs—1(6 —2) + logs—1(n) — logs—1(9)
k> logs—1 (5;2) + logs-1(n)
> —2+logs_1(n) (A1)
> |logs—1(n)] —1

In line A.1, we have used that

& T>(5—1)‘2
& 6%;2<(6—1)2
& §<(6-1)%*0-2)

8% —46% + 46 — 2

i

which is true for § > 2.
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A.2. Theorem 2

For all networks I = (NN, C), the expansion can be at most 1.

Proof. This proof is adapted from [34]. For every subset U € N, let Ey = {(z,y) € E|lz € U}
where an edge appears twice in Ey if 7,y € U. Clearly (U,U) C Ey. Since |U| = [Ey| it holds
that C(U,U) < |U| and equivalently C(U,U) < |U|. Hence, C(U,U) < min(|U|,|U|) and

therefore _

I) = _2\BY)
) = B8 (0T, 107) <

A.3. Theorem 3

For a random graph G' = (n, p), the expected degree of a fixed vertex v is p(n — 1).

Proof. For a graph G = (n, p) and a fixed vertex v, let X;, an indicator random variable denote
each neighbouring vertex such that

Xi:{ lif (v,i) e E

0if (v,i) ¢ E fortr=1,...n—1

The degree of v is then the sum of its neighbouring vertices

degree(v) = X =X1+Xo+ ...+ X1

E[degree(v)] = E[X]=E[X;]+E[X:2]+ ... +E[X,]
— (n—-1)E[X]
And since
E[X]=1xp+0x(1—p)=p
we have

E[degree(v)] = p(n — 1)
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Simulator Manual

B.1. Compilation and Running

The simulator is written in Java and can be built and run from source code with the included
Makefile, by calling make. The simulator can then be run by setting the classpath variables (run
make classpath)and executing

java sim.Main <config.cfg>

command make run which both sets-up the classpath and executes the program.

B.1.1. Dependencies

The simulator uses the JGraphT! library. The library jar must be included in the class path
to build and run. The location of this can be specified in the Makefile by setting the variable
JGRAPHT_JAR. Several command line programs are used to visualise data: Gnuplot? is used to
generate plots of latency and throughput and GraphViz? is used to visualise structures such as
network topology and channel dependency graphs.

B.2. Output

The simulator will initially output the configuration parameters. For each simulation run it will
give summary statistics for each sample, and when the run completes, a summary of the run will
be given. Figure B.1 shows some example output from a simulation run.

B.3. Configuration Parameters

The simulator program takes a single command line argument specifying a configuration file
(* . cfqg) used to specify the run time parameters of a simulation. The configuration is plain text
and each line is of the format:

<variable> = <value>

a # character at the beginning of the line. The parameters mode, topology, routing and
traffic_pattern are required, but all other parameters can be optionally specified and if
absent set to default values.

Randomness is used in various parts of the simulator such as topology and traffic generation,
in these cases the random number generator seed can be explicitly specified so that the user can
control the randomness. With a particular seed value, the output will be deterministic, which is
important to be able to control between experiments. All seed parameters (x _seed) can be set to
t ime, so that the system time in milliseconds is used.

"http://jgrapht.sourceforge.net/
http://www.gnuplot.info/
3http ://www.graphviz.org/
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Starting simulation run 1, injection rate = 0.02.

Warmed up after 1000 cycles

Sample Generated Received Flying Latency
99 6406 6400 6 83.31
Finished sampling, draining packets...

0, 6 left

Done in 124 cycles

[STATS] ============================================
Packets generated 6406

Packets received 6406

Overall latency 81.00640240688723

Overall hops 6.95

Overall accepted 0.021857

Overall min accepted 0.00

Latency std dev 13389.207279223454

Accepted std dev 9.747225191757491E-4

Starting simulation run 2, injection rate = 0.03.

Warmed up after 1000 cycles
Sample Generated Received Flying Latency
84 8105 7828 277 2198.10

Figure B.1.: Example output for a simulation run.
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B.3. Configuration Parameters

B.3.1. Simulator Modes

The simulator can be run in two different modes, debug or run, set with the mode parameter.

Debug Mode

The debug mode launches the program with a GUI interface where each node is represented in a
tab detailing the state of the input and output virtual channels of both the router and processor.
Various status updates are written to separate consoles for the router and processor. The simulation
can be run, paused and stopped, or stepped through to inspect the state each cycle. The following
two parameters are used to bound the run time behaviour of the simulator when in debug mode:

max_cycles Sets the maximum number of cycles the simulation can run for, when reached
execution is terminated.

max.-msgs Sets the maximum number of messages that can be generated in a single
simulation run.

Run Mode

Run mode initialises the simulator to perform experiments. Run mode uses the following extra
parameters to specify the execution of the experiments.

sim_runs Sets the number of complete simulation runs to be collated into the final
result.

sample_period Sets the size of a sample period in cycles.

num_samples Sets the number of samples to be taken, hence sample period * num_samples
is the number of executed cycles used for measurement.

latency_thresh Sets a threshold latency value in cycles. If the average latency in the
simulation exceeds this value then the simulation terminates. If this value is
set to O this it is disabled.

warmup_cycles Sets the number of cycles necessary for the simulator to reach a steady state.
If this value is set to 0, then this is ignored and the simulator warms up when
the percentage change in latency and throughput is less than the parameter
warmup-thresh.

B.3.2. Topology

The topology parameter specifies the network topology and can take the following values. The
simulator supports two regular networks and three random irregular constructions. A level of
faults can also be specified for the regular topologies.

mesh A k-ary n-mesh, where k and n are specified by parameters k and n respec-
tively.

tori A k-ary n-cube (torus), where k and n are specified by parameters k and n
respectively.
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erdosrenyi

dregular

preferential

B.3.3. Routing

An Erdds-Rényi random graph. The following extra construction parameters
can be specified: num_nodes sets the number of nodes in the graph and p
sets the probability of a link between two nodes. A graph_seed parameter
can be set to control the randomness of construction between experiments.

A d-regular random expander graph. The following extra construction pa-
rameters can be set: num_nodes sets the number of nodes and d sets d,
the graph degree. As with the Erd6s-Rényi random graph, a graph_seed
parameter can be set.

A preferential attachment graph. The construction parameters m sets the
initial number of nodes and steps sets the number of extra nodes added to
the graph, hence the total number of nodes will be m + steps. Again the
graph_seed can be set to control randomness.

The rout ing parameter specifies the routing algorithm to be used in the network and can take
the following values. For each algorithm, some number of virtual channels may be required to
provide freedom from deadlock.

dor

updown

segment

lashtor

minimal

B.3.4. Network

Dimension order routing, can only be used with mesh or torus topologies.
For meshes, only one virtual channel is necessary for deadlock freedom. For
tori, two virtual channels are necessary.

Up*/down* routing, compatible with any topology. The spanning tree root
node is randomly selected, or can be selected by setting root _node with a
node identifier.

Segment-based routing, compatible with any topology. The seg_seed
parameter can be set as a seed for the random number generator for deter-
ministic calculation of segments.

LASH-TOR routing, compatible with any topology. The number of virtual
channels is dependent on the calculation of paths in the network. If the
number of virtual channels (num_vcs) is less than the number required by
LASH-TOR then the simulation will fail.

Minimal path routing, used for debugging purposes, will deadlock.

The network parameters specify ‘physical’ parameters of the network components.

buffer_size
num_vcs

link_delay

rand_seed

70

Sets the size of the buffers in flits on input virtual channels.
Sets the number of virtual channels to use for each input channel.

Sets the number of cycles taken for flits and credits to be transmitted along a
link.

Sets the random number generator seed for the random elements of network
execution such as traffic generation.



B.4. Extensibility

B.3.5. Traffic

The spatial distribution of traffic over the network is governed by a traffic pattern, set using the
traffic_pattern parameter and can take the following values:

uniform Each source sends a uniform amount of traffic to each other node. Destination
nodes are selected for each packet uniformly at random.

bitcomp Bit complement. d; = —s;

bitrev Bit reverse. d; = sp_;_1

transpose d; = Si+b/2 mod b

shuffle di = Si—1 mod b

tornado di = sz + [k/2] =1 mod k

neighbour dy =8, +1 mod k

randperm Random permutation. A fixed permutation of traffic is chosen uniformly at

random from the set of all permutations. The parameter perm_seed can be
used to control randomness.

The injection process determines the temporal distribution of traffic in the network and is set
with the injection_process parameter and can take the following values:

bernoulli Bernoulli injection process, the injection rate r parameter injection_rate
must be set such that 0 < r < 1.

onoff Modulated Markov Bernoulli process with two states ‘on’ and ‘off’. The
probabilities of transitions between on and off « and 3 respectively, can be
set by burst_alpha and burst betasuchthat 0 < o, 5 < 1.

Finally, the f1its_per_packet parameter can be set to specify a constant number of flits
per packet.

B.4. Extensibility

The simulator has been designed and written in an object-orientated style as the components of a
network can intuitively be thought of as objects, for example Node and Link objects constitute
a Network. The simulator has been designed to be an extensible platform that is non-specific
to topologies or routing algorithms, consequently the addition of new topologies or routing
algorithms is straight forward.

B.4.1. Topologies

A Network is a set of interconnected Nodes. The static method Topology.createTopology ()
is responsible for creating the set of Nodes. This can be done in two ways, the first is to create
a Construction graph which allows you to specify the topology by adding edges between
nodes to it. On completion, the Construction has a method create () to create the set of
Nodes for the network. Figure B.4.1 gives a example code-snippet of how to randomly add edges

71



Appendix B. Simulator Manual

# Simulation mode ===========—====—=—=——————————=
mode = run

# Topology parameters =========================

topology = mesh
k =4
n = 2

# Rout lng Parameters ==========================
routing = segment
seg_seed =1

# Network parameters oo ————

buffer_size =4
num_vcs = 4
link_delay =1

[
o+
'_l.
3
0]

rand_seed

# Traffic parameters B T T

traffic_pattern = bitrev
flits_per_packet = 20
injection_process = mmp
burst_alpha = 0.1
burst_beta = 0.9

# Run mode simulation Parameters =============

sim_runs = 10

sample_period = 1000
num_samples = 100
latency_thresh = 1000
warmup_thresh = 0.05

Figure B.2.: Example simulator configuration file
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Construction graph = new Construction (numNodes);

for(int i=0; i<numNodes; i++) {
for(int j=0; j<numNodes; j++) {
if (rand . nextDouble < 0.5)
graph.addEdge (i, j);

}

Node[] nodes = graph.buildTopology ();

Figure B.3.: Example code for a random topology construction using a Construction graph.
Input and output Link ordering and corresponding port numbers are generated by
the Construction.

Node[] nodes = new Node[numNodes ];

for(int i=0; i<nodes.length; i++) {
nodes[i] = new Node(i, 2, 2);
}

for(int i=0; i<numNodes; i++) {
nodes[i].connectTo(nodes[(i+1) % numNodes], 1, 2);
nodes[i].connectTo(nodes[(i—1) % numNodes], 2, 1);

Figure B.4.: Example code for explicit topology construction. Note that with this method node in
and out degree along with port numbers for connections have to be specified.

between nodes to a Construction and return the set of nodes. This is the way the random
graphs are generated.

The second, slightly more complicated way, is to explicitly construct the Nodes. This way
is used for Mesh and Torus constructions as greater control over the port constructions is
necessary. To do this, each Node must be constructed, then the connectTo () method
can be used to specify directional link connections. After all links have been connected the
finishedConnecting () must be called for each Node. Figure B.4.1 gives a code snippet
for how this type of construction could be used to build a ring.

B.4.2. Routing Algorithms

New routing algorithms can also be simply added to the simulator by implementing the Rout ingFunction
interface. This specifies two methods to return an output port and an output virtual channel based
on the current node, the input virtual channel and the destination node. Most of the algorithms
implemented in the simulator are based on tables, where lookups are performed to obtain output
ports and virtual channels. This requires a static configuration phase, and is implemented with a
static method in the routing function class called in the Net work object’s constructor, passing in
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the Network object as an argument.
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