
Scalable abstractions for
general-purpose parallel computation

James W. Hanlon

A thesis submitted to the University of Bristol in accordance with the
requirements of the degree Doctor of Philosophy in the Faculty of

Engineering, Department of Computer Science, March 2014.

70,000 words.

Copyright © 2014 James W. Hanlon, some rights reserved.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License.

http://creativecommons.org/licenses/by-nc-nd/4.0/

i

http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

Parallelism has become the principal means of sustaining growth in computational performance but
there has been relatively little development in general-purpose computer architectures or programming
models that can deal eUectively with large amounts of it. A new general-purpose model of parallel
computing would enable standardisation between architectures, high-volume production and software
that is portable between diUerent machines, now and as they develop with future technology. There
is substantial opportunity to support this in emerging areas of embedded computing, where the
problems of sensing, interaction and decision making can exploit large amounts of parallelism.
This thesis demonstrates the essential aspects of a scalable general-purpose model of parallel

computation by proposing a Universal Parallel Architecture (UPA), based on a highly-connected
communication network, and a high-level parallel programming language for it called sire that can
be compiled using simple techniques. The design of sire combines the essential capabilities of shared-
memory programming with the beneVts of message passing to support a range of programming
paradigms and to provide powerful capabilities for abstraction to build and compose subroutines and
data structures in a distributed context. The design also enables program code to be distributed at
run time to reuse memory and for processor allocation to be dealt with during compilation so that
the overheads of using distributed parallelism are minimal.
To evaluate whether the UPA is practical to build, a high-level implementation model using

current technologies is described. It demonstrates that the cost of generality is relatively small; for a
system with 4,096 processors, an overall investment of around 25% of the system is required for the
communication network. Executing on speciVc UPA implementations, sire’s primitives for parallelism,
communication and abstraction incur minimal overheads, demonstrating its close correspondence
to the UPA and its scalability. Furthermore, as well as executing highly-parallel programs, the UPA
can support sequential programming techniques by emulating large memories, allowing general
sequential programs to be executed with a factor of 2 to 3 overhead when compared to contemporary
sequential machines.

Acknowledgements

My PhD has been a fantastic experience in which I have had free reign to pursue a line of research
that has been fascinating, even though at times, hard to deVne. I owe a great deal of thanks to
my supervisor Simon Hollis who originally encouraged me to embark on it and who has been so
supportive throughout, and to David May who has provided endless inspiration and guidance.

There have been a number of people who have contributed to this work in various ways, to whom
I am also very grateful: Henk Muller and Simon McIntosh-Smith who have provided valuable advice
and discussion throughout; Simon Knowles, Paul Winsor and Ian Stewart who have provided their
expertise and helped me to put my work in context; Paul Kelly who was kind enough to host me for
a year in his research group at Imperial College in London; and Richard Osborne for his help getting
to grips with the XS1 architecture and for the fast emulator he developed.
Of course, success with my PhD has not only required academic and technical guidance, but also

moral support and distractions from the intensity of working alone; thank you to my colleagues and
friends, particularly Chris Jackson, Markus Jalsenius, Leon Atkins, Steve Kerrison and James Pallister
for this.
Finally, I would like to thank the EPSRC for providing the Vnancial support for my studies.

Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the requirements of the
University’s Regulations and Code of Practice for Research Degree Programmes and that it has not
been submitted for any other academic award. Except where indicated by speciVc reference in the
text, the work is the candidate’s own work. Work done in collaboration with, or with the assistance
of, others, is indicated as such. Any views expressed in the dissertation are those of the author.

Signed:

Date:

CONTENTS

List of Figures xiii

List of Tables xv

List of Processes xvii

1 Introduction 1
1.1 Parallelism in computer architecture . 1
1.2 General-purpose parallel computers . 2
1.3 This thesis . 3

I Background 9

2 Parallel computation 11
2.1 Parallelism and communication . 11
2.2 Models . 14
2.3 Summary . 16

3 Parallel programming, languages and compilation 17
3.1 Principles . 17
3.2 Criteria for a general-purpose parallel-programming language 24
3.3 Survey of programming and compilation approaches 28
3.4 Summary . 38

4 General-purpose parallel architecture 41
4.1 Universal communication networks . 41
4.2 Switching mechanics . 54
4.3 Processing . 58
4.4 A short survey of real machine architectures . 61
4.5 Summary . 63

II The UPA and the sire language 65

5 The Universal Parallel Architecture 67
5.1 Overview . 67
5.2 Interconnect . 67
5.3 Processing . 68
5.4 Memory . 68
5.5 Packaging . 69

6 The sire programming language 71
6.1 The model of computation . 71
6.2 Notation . 71
6.3 Overview . 72

ix

6.4 Primitive commands . 73
6.5 Structured commands . 75
6.6 Types, names and scope . 77
6.7 Composition . 80
6.8 Servers . 83
6.9 Replication . 87
6.10 Expressions and elements . 90
6.11 Procedural abstraction . 91
6.12 Program . 97
6.13 Discussion . 98

7 Sire programming structures 101
7.1 Process structures . 101
7.2 Server structures . 116
7.3 Discussion . 128

8 Compilation of sire to the UPA 131
8.1 Overview . 131
8.2 Program transformations . 134
8.3 Machine target . 150
8.4 Run-time kernel . 154
8.5 Code generation . 167
8.6 Discussion . 175

III Evaluation of implementation cost and performance 179

9 An implementation model for the UPA 181
9.1 Overview . 181
9.2 Background . 181
9.3 Implementation model . 184
9.4 Model parameters . 186
9.5 Cost and scaling . 191
9.6 Discussion . 200

10 Performance evaluation of the UPA and sire 205
10.1 Simulation model . 205
10.2 EXciency of sire primitives . 208
10.3 Emulation of large sequential memories . 217
10.4 Discussion . 224

11 Summary and conclusions 229
11.1 Background . 229
11.2 Contributions . 230
11.3 Conclusions and future work . 232

References 233

A Sire syntax 253
A.1 Collected syntax . 253
A.2 Ordered syntax . 258
A.3 Operators . 263

x

A.4 Representation of values . 263
A.5 Character set . 263
A.6 Comments . 264
A.7 Keywords . 264

B An overview of the XS1 architecture 265
B.1 Overview . 265
B.2 Memory access . 266
B.3 Branching and procedure calls . 266
B.4 Resources . 266
B.5 Communication . 267
B.6 Events and interrupts . 267
B.7 Threading . 268
B.8 Locks . 268

xi

LIST OF FIGURES

1.1 Components of a general-purpose form of computation and the abstractions involved. 3

2.1 Communication in message passing and shared memory. 12

3.1 Decompositions of a 3D domain. 18
3.2 Recursive decompositions. 19
3.3 The shared memory paradigm. 22
3.4 Regular process structures. 23
3.5 Regular data-Wow structures. 23
3.6 The task farm paradigm. 24
3.7 The event handler paradigm. 24
3.8 The spectrum of computing. 28

4.1 A complete network. 42
4.2 Illustrations of the network model. 42
4.3 Examples of common bounded-degree networks. 45
4.4 Hypercube networks. 46
4.5 ButterWy networks. 46
4.6 Clos networks. 46
4.7 Fat tree networks. 47
4.8 Block architecture of an input-buUered crossbar switch. 54
4.9 Connectivity of a high-degree switching component. 54
4.10 Wormhole packet switching. 56
4.11 Communication startup latency. 59

5.1 A high-level view of the UPA. 67

7.1 A pipeline process structure. 102
7.2 A 2× 2 grid process structure. 105
7.3 A depth-3 binary tree process structure. 110
7.4 A 3D hypercube process structure. 113
7.5 A server that provides a random access memory. 122
7.6 A server that provides a parallel random access memory. 125
7.7 An embedded pipeline process structure. 127

8.1 An illustration of deadlock arising from many-to-one communications. 133
8.2 The sequence of transformations to produce the canonical form. 135
8.3 A block diagram of the XS1 architecture. 151
8.4 Example stack frame layout illustrating the calling convention. 153
8.5 Block diagram of the per-processor run-time kernel. 155
8.6 Master and slave memory layouts produced by compilation. 155

9.1 Example Clos switch topologies. 183
9.2 Layouts for 256-tile Clos and mesh networks for the UPA processing chip. 187
9.3 Cut through view of the packaging. 188
9.4 Chip layouts on the interposer. 188

xiii

9.5 Scaling of switch requirement and diameter. 193
9.6 Scaling of capacity and bisection size. 193
9.7 Total chip area. 194
9.8 Chip area components. 195
9.9 Scaling of the total interposer area. 199

10.1 Execution time for the local procedure-call benchmark. 211
10.2 Execution time of server calls. 212
10.3 Execution time of remote calls. 213
10.4 Performance of process distribution. 214
10.5 Performance of the hypercube and tree process structures in sire. 215
10.6 Performance of the hypercube and binary tree process structures in sire. 216
10.7 Instruction mix of the Dhrystone and compiler benchmarks. 220
10.8 Latency of memory emulations. 221
10.9 Performance of the synthetic Dhrystone and compiler benchmarks. 222
10.10 Slowdown of emulation over a range of instruction mixes. 223
10.11 Average read and write latency for monolithic DRAM systems. 226

xiv

LIST OF TABLES

3.1 A summary of the diUerent parallel-programming paradigms. 22
3.2 Summary of parallel-programming languages and libraries. 30

4.1 Summary of diUerent sparse networks and their properties. 50
4.2 A short survey of real parallel machine architectures. 62

8.1 Values associated with each process in Process 8.3 after transformation 3. 141
8.2 Behaviour of Process 8.8. 146
8.3 Overview of the kernel routines. 156
8.4 Constant values used in the run-time kernel. 156
8.5 Summary of the storage requirements per processor for the run-time kernel. 156
8.6 Local storage allocated by a worker thread to host an incoming process. 161

9.1 Parameters for the processing chip model. 189
9.2 Parameters for the interposer. 189
9.3 ITRS data for global wires. 189
9.4 Comparison of contemporary memory technologies. 190
9.5 Selected memory capacities of SRAM and eDRAM. 190
9.6 Cost-performance chips. 196
9.7 Global wire lengths and their delays for selected Clos chips. 196
9.8 Global wire lengths and their delays for selected mesh chips. 196
9.9 Potential multi-chip Clos system conVgurations. 197
9.10 Potential multi-chip mesh system conVgurations. 198
9.11 A comparison of area and sequential capability of diUerent processors. 200

10.1 Parameters for the network performance model. 207

xv

LIST OF PROCESSES

7.1 The replicated pipeline node. 103
7.2 The pipeline source node. 103
7.3 The pipeline sink node. 103
7.4 The replicated grid node. 106
7.5 The replicated border nodes to source and sink from the grid. 107
7.6 The tree root node. 109
7.7 The replicated tree branch node. 109
7.8 The tree leaf node. 109
7.9 Hypercube distribution procedures. 114
7.10 A hypercube sorting procedure. 115
7.11 The hypercube source and sink master node. 115
7.12 The replicated hypercube node. 115
7.13 A server that provides access to an array. 116
7.14 A server that allows the internal array to be modiVed locally. 117
7.15 A stack server. 118
7.16 A buUer server. 119
7.17 A task farm farmer server. 120
7.18 A task farm worker process. 120
7.19 A server providing a distributed random access memory. 122
7.20 An access server that performs caching. 123
7.21 A server providing a distributed parallel random access memory. 125
7.22 A pipeline node server. 127
7.23 A pipeline control server. 127

8.1 Compilation transformations example: input program. 136
8.2 Transformation example: stage 1. 138
8.3 Transformation example: stage 3. 141
8.4 Transformation example: stage 4. 142
8.5 Transformation example: stage 5. 143
8.6 Transformation example: stage 6. 145
8.8 A process that employs parallel recursion to distribute execution. 145
8.7 Transformation example: stage 7. 146
8.9 A generalised version of Process 8.8. 147
8.10 Transformation example: stage 8 . 149
8.11 A routine to receive a process. 161

xvii

CHAPTER 1.

INTRODUCTION

The rate of development of computing in the last century is unmatched by any other technology;
consequently, it has become an integral part of science, commerce, industry and everyday life. Its
success can be attributed two key factors: the proliferation of a single basic model of computation and
the development of sympathetic implementation technologies that have supported an exponential
growth in performance.
The conventional basic model of computation has been the von Neumann architecture [von45],

which can be seen as an eXcient realisation of Alan Turing’s work on universal computing ma-
chines [Tur37]. In Turing’s work, a computing machine is universal in the sense that, as well as being
able to execute any program that it may be supplied as an input, it can emulate any other machine
by reading both the description of the machine to be emulated, as well as the input. Making this
universality eXcient means that the cost of the machine and the performance of an emulation are
both proportional to that of a hypothetical specialised device that implements directly the machine
being emulated. This has allowed von Neumann machines to take over from special-purpose devices
in many application areas as a cheaper and more Wexible alternative.

The von Neumann model is based on the abstraction of a single large randomly-accessible memory
in which both the program and data are stored and accessed by a processor that performs computa-
tional operations. Arbitrarily large programs and data sets can be handled by scaling the size of the
memory and performance can be scaled by increasing the rate at which operations are performed.
Complementary metal-oxide-semiconductor (CMOS) technology has provided a synergistic implemen-
tation technique for the model. It is a technology for densely integrating electronic circuits onto
semiconductor materials and ways of scaling it have provided exponential increases in the density
and operating frequency of devices.1 This has provided according increases in memory capacity and
processing rate and, driven by huge demand in consumer markets, this has led to rapid iterations of
hardware, providing immediate beneVts to existing software.
Inevitably, the scaling of frequency in CMOS devices has not continued indeVnitely due to funda-

mental limits in its power eXciency, and since this was the principal way by which the performance
of von Neumann machines was scaled, their performance has stopped scaling in the same way. This
occurred around 2005 and since then, there have only been very modest increases in sequential
performance. However, although operating frequency has stalled, the density of CMOS devices has
continued to scale and is predicted to do so for the next 15 to 20 years [Int12a].

1.1. Parallelism in computer architecture

It is now widely accepted that parallelism is the only known means of sustaining growth in com-
putational performance [FM11, p. 109] and as the density of CMOS devices continues to scale, the
microprocessor industry will produce designs with larger number of processors. Based on this, it
looks increasingly certain that future systems will involve large numbers of processors,2 potentially
with thousands of cores per chip [Bor07]. There are many application areas that will be able to make

1This scaling was Vrst observed by Gordon Moore at Intel in 1965 and has since been known as Moore’s law [Moo65]. It
has since become a signiVcant driver for the industry as a self-fulVlling prophecy.

2This is reWected in the model used by the International Technology Roadmap for Semiconductors (ITRS) which was
signiVcantly revised in 2007, setting a basis of 4 processor cores per chip and projected a factor of 1.4x increase every
technology generation, which is on average 2.5 years [Int12c, p. 14].

1

Chapter 1. Introduction

use of large amounts of parallelism. These include artiVcial intelligence, vision, graphics, natural
language processing and human interaction. With continued scaling, these will increasingly be
applied in embedded systems such as robotics, where there is enormous potential for the further
application of computers.
The prevailing reaction from microprocessor designers since 2005 has been an evolutionary one

to extend the von Neumann architecture with multiple processors that all access the same memory.
These devices are known as symmetric multiprocessors (SMPs). They maintain compatibility with
legacy code, which has perhaps come to be the most important driver in microprocessor design, but
they exacerbate the problem of memory latency by increasing the competition for access bandwidth.
This is known as the von Neumann bottleneck [Bac78]. The consequence is that this approach will
likely face diminishing returns [ABC+06] and it is expected that SMPs will not scale well beyond
around 24 cores [RKB+09]. They cannot therefore in the long term support large numbers of
processors to provide the expected sustained growth in performance from parallelism.
Despite a preoccupation with the von Neumann model and frequency scaling in mainstream

consumer devices, parallelism has been an active area of academic study and a practical means
of scaling performance in high-performance computing (HPC) systems, which deliver performance
far beyond that of a single processor. Typical state-of-the-art HPC systems employ hundreds of
thousands of processors and have become essential in areas such as science and engineering for
dealing with large-scale problems. Parallelism also has a long history in specialised devices such as
graphics processing units (GPUs) and digital-signal processors (DSPs) where the problem domain is
well deVned and the markets large enough to support their production. In particular, GPUs have
developed to support greater levels of programmability, and consequently have found applications in
other areas that Vt their restricted model of parallelism. In these cases, GPUs can provide signiVcant
improvements in performance, but they remain used typically as an accelerator in conjunction with
a conventional SMP to handle sequential execution and more general forms of parallelism. This
heterogeneous approach is at odds with a single basic model of computation since it essentially argues
for a variety of special-purpose designs.

1.2. General-purpose parallel computers

Parallelism has been deployed in speciVc domains with great success but a more general model has
not yet emerged. For parallelism to succeed sequential computing and become the standard form, a
model analogous to the von Neumann general-purpose sequential computer is required that embodies
the same concept of eXcient universality [Val88, McC93]. Such a model would enable standardisation
between architectures and high-volume production, leading to optimised manufacturing processes
and low-cost devices, and the development of software that could not only be used on diUerent
parallel machines, but also on successive generations in order to beneVt from new technologies to
deliver increasing levels of performance [May94]. The emergence of large consumer-based markets,
for instance robotics, could drive this.
Surprisingly, Valiant has already described the essential aspects of a basic model of parallel

computation [Val90b] and it is based on parallel communication networks that can support arbitrary
patterns of communication. These provide architectural independence by allowing a separation of the
implementation of a program from the structure of a machine implementation, with both conforming
to the basic computational model. Crucially, architectural independence simpliVes the process of
writing and compiling eXcient programs because the machine structure does not need to be taken
into account.
In the analogy with the von Neumann model, structural independence corresponds to the ab-

straction of the memory that supports arbitrary patterns of access but this depends on memory
implementations having to invest heavily in the structure and interconnection to deliver this capabil-
ity. In the 1950s, before the advent of magnetic storage technology that could deliver random access
eXciently, ultrasonic memories such as mercury delay lines had non-uniform behaviour and a great

2

1.3. This thesis

deal of eUort was invested to optimising accesses with optimum codings to reduce delay [Wil68].
This however signiVcantly complicated the programming of systems with these memories and tied
programs to speciVc memory implementations. Random-access memory facilitated a simple program-
ming model for sequential processors and, up until the mid-1980s, memory latency corresponded
closely to computational operations such as arithmetic and branching. In the C programming lan-
guage [KR88] up to this time, each primitive operation corresponded to one machine operation
(memory access or otherwise), providing the programmer with a simple performance model and eX-
cient and predictable execution [Myc07]. However, as the performance of memory has deteriorated
with respect to processor speeds, architectural optimisations such as caches have led to the need for
programming and compilation approaches that can leverage these and consequently, C has lost its
close correspondence to sequential machines and its utility as a simple abstraction.

The essential aspects of a practical general-purpose model of computation are therefore a universal
machine that can be implemented eXciently with current technology, a high-level language that can
express arbitrary programs and a compilation process that can transform programs written in the
language to execute eXciently on the machine. In this, there are three key abstractions; Vrst, the
universal nature of the machine provides an abstraction of its implementation, second, the high-level
programming language provides a further abstraction of the machine to provide the programmer
with primitive constructs that are convenient to use to express computational structures, and third,
the language also provides the ability to create new abstractions such as subroutines, modules and
libraries, to simplify the expression of complex program structures.
Figure 1.1 below summarises the components of general-purpose computation and abstractions

involved.

programs

high-level language

compilation scheme

computational model

machine architecture

programming abstractions

language abstraction

machine abstraction

Figure 1.1.: Components of a general-purpose form of computation and the abstractions involved. The shape
of the compilation-scheme component is tapered to represent a reduction from the high-level
language to the computational model and the machine-architecture component is also tapered to
reWect that the computational model captures only the essential features of the implementation.

1.3. This thesis

This thesis practically demonstrates the essential aspects of a general-purpose model of parallel
computation by proposing a scalable Universal Parallel Architecture (UPA) based on a fast, highly-
connected communication network and a high-level programming language called sire that corre-
sponds closely to the UPA because it can be compiled using simple techniques. It evaluates both the
implementation cost of the UPA using current technologies and its performance, focusing on speciVc
sire programs as well as its ability to support sequential programming techniques.

3

Chapter 1. Introduction

1.3.1. Contributions

The UPA design

1. An architecture that can support the eXcient execution of highly-parallel programming tech-
niques as well as sequential ones, and that can switch between these during the execution of a
program.

2. An architecture that allows implementations of it to be easily specialised by adjusting the
network performance or balance of processing to memory to optimise for speciVc workloads.

3. The choice of a folded-Clos network for the interconnect topology, based on:

a) its equivalence to the hypercube and Vxed-degree variants and consequent universality
as a communication network, and its ability to support two-phase randomised routing
with no increase in the average distance that messages travel;

b) its hierarchically recursive structure that allows it to be packaged with diUerent technolo-
gies and for bandwidth to be Wexibly provisioned at each level.

4. The use of a high-degree crossbar switching element to reduce the number of stages in the
folded-Clos network and to connect multiple processors to each switch.

5. The use of wormhole switching and a remote memory access mechanism to eXciently support
both arbitrary-sized messages and memory accesses.

6. The use of XMOS XS1 processor cores that provide direct support for communication and
parallelism to minimise communication startup latency and the cost of creating parallel processes
respectively, so that the degree of parallelism exploited from a particular problem can be
maximised.

The sire programming language design

7. The ability to express and combine a wide range of programming paradigms, including message-
passing and data-Wow structures, task farms and event handlers, in particular, PRAM-style
shared-memory parallel computations and RAM-style sequential computations.

8. The concept of a server as a language primitive:

a) to provide a mechanism for sharing within a message-passing framework (i.e. combining
the capabilities of shared memory programming with those of message passing), where
sharing in this context relates to many-to-one patterns of communication;

b) to provide a basis for distributed parallel subroutines, distributed representations of data
(as a basis for distributed data structures) and the modular composition of a program;

c) to deal with all aspects of abstraction that involve communication, allowing processes to
be named (rather than having named communication channels as was the case in occam)
in order to facilitate a simple distributed implementation;

d) to provide a mechanism for explicitly moving pieces of program to the data on which
they operate (i.e. between processors);

e) with declaration syntax similar to standard variable declarations so that a program can be
composed in a conventional way with a sequence of declarations followed by a a sequence
of operations;

f) with call syntax similar to local procedure calls to allow a programmer to move easily
between local and remote forms of a call to employ parallelism or to distribute data.

9. Facilities for combining collections of servers and creating abstractions based on them.

10. The capability of sire to be compiled using simple techniques (i.e. with a non-optimising
compiler) and therefore for the primitive aspects of the language to correspond closely to the
operation of the UPA, providing a transparent execution model.

4

1.3. This thesis

11. For sire to be used as a ‘system’ programming language because of its close correspondence
to the UPA. This, for example, allows it to be used to build components for managing and
optimising distributed systems such as memories with a particular model of consistency,
caches to transparently improve locality and facilities for replication and combining to manage
distributed data.

Compilation of sire programs to the UPA

12. For a large part of the sire compilation process to be dealt with using source-to-source program
transformations into to a simpliVed canonical form, using algebraic properties of the language.
This is beneVcial because the output is understandable by the programmer and only the small
canonical subset needs to be implemented.

13. A compile-time scheme to determine a run-time schedule for the allocation of processes to
processors. This avoids the overheads of run-time processor allocation and thus minimises the
overhead of using distributed parallelism.

14. EXcient run-time distribution of program code between the memories of diUerent processors
to reuse processor memory. This also decouples the compilation process and its run time from
the number of processors in the target system and allows minimal program binaries to be
produced (i.e. not one for each processor) that can be replicated rapidly over a system at boot
time.

15. A compile-time scheme to prevent deadlock that can be caused by many-to-one server channel
connections. This is based on queuing of client requests by servers to engage with them, so
that client requests do not block other communication traXc in the network.

Performance evaluation of the UPA and sire

16. A high-level implementation model of the UPA, based on a packaging of a folded Clos using
a H-tree layout and a simpliVed VLSI model with speciVc parameters to characterise current
technology.

17. Evaluation of the cost and scaling of the UPA implementation, demonstrating that the overall
investment in a universal interconnect for a system with up to 4,096 processors is around 20%
to 30% of the total cost, compared to 5% with a non-universal 2D mesh network.

18. Evaluation of the performance of the primitive mechanisms for parallelism, communication
and abstraction in sire, demonstrating that the overheads are very low:

a) remote server calls, performed across the network, have an overhead of 8 to 20 times that
of local calls;

b) processes can be oYoaded to remote processors if they exceed just a few tens of thousands
of operations (around 10 µs to 60 µs at 1 GHz);

c) the mechanism for process distribution can bring thousands of processors into action in a
few thousand cycles (4,096 tiles in around 200 µs at 1 GHz).

19. A compiler for a simple sequential language that generates programs to execute on the UPA
with a large emulated memory.

20. Evaluation of the ability of the UPA to support sequential programming techniques by emulat-
ing large random access memories. The results of this show that general sequential programs
can be emulated with a factor of 2 to 3 slowdown when compared to conventional sequential
architectures.

5

Chapter 1. Introduction

1.3.2. Overview

This thesis is divided into three parts: background, the description of the UPA and sire, and perfor-
mance evaluation. Each chapter deals with diUerent components of the ‘stack’ in Figure 1.1 and with
each summary below, an illustration of the components it corresponds to is included.
The background part consists of three chapters.

Chapter 2 considers the concept of parallel computation independently of any
particular architecture or programming language. It focuses on the two
main communication paradigms: shared memory and message passing and
argues why conventional shared memory is insuXcient for a general model
of parallelism.

program

language

compilation

model

machine

Chapter 3 discusses parallel programming, from high-level issues related to the
formulation of an algorithm, to the issues that aUect the eUectiveness with
which a particular language can be compiled. It outlines criteria for a general-
purpose parallel language and presents a survey of existing programming
approaches.

programs

language

compilation

model

machine

Chapter 4 describes the theoretical results concerning universal networks, describes
the practical details of an implementation of an interconnection network and
presents a short survey of existing parallel machines.

program

language

compilation

model

machine

The UPA and sire language part consists of four chapters.

Chapter 5 presents a description of the UPA and an explanation of its main charac-
teristics.

programs

sire

compilation

model

UPA

Chapter 6 presents a deVnition of the sire programming language that introduces it
incrementally and, for each part, provides simple examples of its use.

programs

sire

compilation

model

UPA

Chapter 7 demonstrates a range of high-level programming structures that can be
expressed with sire and how they can be combined to form complex programs.
The chapter is divided into message-passing process structures and server
structures.

programs

sire

compilation

model

UPA

6

1.3. This thesis

Chapter 8 describes how sire programs can be compiled. It is divided into a
description of the sequence of transformations applied to convert a program
into canonical form, and a description of the generation of executable code
and its combination with run-time program components.

programs

sire

compilation

model

UPA

The evaluation of implementation cost and performance part consists of two chapters.

Chapter 9 describes a realistic implementation model for the UPA, based on current
production technologies, and presents a range of hypothetical systems to
show how the relative proportions of processing, interconnect and memory
scale.

programs

sire

compilation

model

UPA

Chapter 10 presents the methodology and results for the empirical performance
investigations based on the modelled implementation of the UPA from Chap-
ter 9. The Vrst set of experiments investigate the eXciency of the primitive
mechanisms for parallelism and communication in sire and the second set of
experiments investigate the ability of the UPA to support sequential program-
ming techniques.

programs

sire

compilation

model

UPA

Finally, Chapter 11 provides a summary and conclusion.

7

Part I.

BACKGROUND

9

CHAPTER 2.

PARALLEL COMPUTATION

program

language

compilation

model

machine

This chapter examines the concept of parallel computation, to provide a foundation for the later
discussion of parallel programming and machine architecture in Chapters 3 and 4.

Since this thesis is concerned with computers, i.e. general purpose programmable devices to perform
computations, and using parallelism to scale performance, in this context, a parallel computation is
expressed in a high-level language as a program and compiled to a format for execution by a device
consisting of a collection of sequential processors. These correspond to the components above and
below the ‘model’ component of the above stack.
Section 2.1 discusses communication, the principal issue in parallel computation, and the charac-

teristics of the message-passing and shared-memory paradigms; Section 2.2 discusses the two most
practical models of parallel computation based on these paradigms; lastly, Section 2.3 provides a
summary.

2.1. Parallelism and communication

Conceptually, a parallel computation consists of a collection of processes that independently operate
sequentially and work cooperatively to perform a computational task, i.e. arithmetic and logic
operations. Cooperation is achieved by transferring data between one process and another, which is
called communication, and the structure of a parallel computation corresponds to interactions between
processes.

It is evident that a parallel computation must contain some communication, otherwise it would be
a set of independent tasks that produce separate results. Communication is therefore an intrinsic
aspect of parallel computation and it is the principal way in which parallel computer architectures
and programming languages diUer from one another.

There are two main paradigms in parallel computation that characterise the way processes interact:
message passing and shared memory.

• Message passing is based on two operations, send and receive. A communication occurs when
one process performs a send operation and it is matched by a receive operation performed by
another process. Message passing is synchronous when the sender waits until the receiver is
ready before sending a message, and asynchronous when it does not.

• Shared memory is based on two operations, read and write, that provide access to an area of
storage shared between a collection of processes. Processes cooperate with one another by
accessing the shared space.

Message passing corresponds directly to the concept of communication and therefore to the wide
variety of things that communicate. This includes, at one end of the spectrum, us as human beings
that talk to each other, and at the other end, electronic devices that use electric or electromagnetic
signals to convey data from one place to another.

Since shared memory has to be implemented with electronics, and hence a form of message passing,
it can be seen to provide an abstraction of communication. This abstraction is important in parallel
computation because it provides a natural way to formulate parallel algorithms that are based on
access to shared data. Because of this and its similarity to the conventional model of sequential
computation, shared memory has provided the basis for many parallel architectures and programming

11

Chapter 2. Parallel computation

P Qmessage

(a)

P Q

synchronisation

buUer

w
ri
te

read
request

read
response

(b)

Figure 2.1.: An illustration of communication in message passing, where it occurs with a matching pair of
send and receive operations, and in shared memory, where it must be emulated by setting a
synchronisation Wag to indicate a write has completed and the reader can access the message.

languages. However, a model of parallel computation based on shared memory neglects the intrinsic
aspect of communication, making it ineXcient to perform and furthermore, introduces problems
with non-determinism due to data-access races and poses problems for distributed implementations
because of consistency. These issues are discussed in the following sections.

2.1.1. Communicating with shared memory

When it is necessary to perform communication between two processes in a shared-memory model
of computation, message passing must be emulated (it will be argued in §3.1.3 [p. 21] that many
common paradigms in parallel algorithms are based on interactions). The problem with this is that
it is not possible to do so eXciently. For a process P to send a message to another process Q in a
shared memory, they require a synchronising location S and a buUer B, then:

1. P repeatedly reads the value at location S while it is 0;

2. when S is 1, P writes the value to be transmitted in B;

3. P writes the value 1 in S.

For Q to receive the message:

1. Q repeatedly reads the value at location S while it is 0;

2. when S is 1, Q reads the value of B, which is the message sent by P ;

3. Vnally, Q resets S to 0.

This communication scheme is illustrated in Figure 2.1b. The source of the ineXciency in this is in
the polling behaviour of the receiver since it amounts to wasted work. To avoid this, the receiver
could be notiVed by an interrupt generated by the sender while it is performing other work. However,
interrupts require context switches where execution of a process is suspended and all processor state
associated with process is saved so the interrupt can be dealt with, which introduces further overhead
and timing issues.

The above scheme for implementing message passing illustrates that there is an inherent diXculty
in implementing interactions with shared memory. This can be summarised as whenever two or more
processes access a particular storage location, a synchronisation mechanism is required to ensure
data is written before it is read.
The ineXciencies of polling or interrupts can be reduced by augmenting the implementation of

shared memory with primitives to support synchronisation. For example, an operation to synchronise
two processes could be implemented by sending messages to deschedule the execution of a process
waiting to receive a message and to schedule the execution when it has arrived [May94]. This
however essentially amounts to the addition of message-passing functionality to the implementation.

12

2.1. Parallelism and communication

2.1.2. Non-determinism and shared memory

Another important issue with shared memory is that it introduces the potential for non-deterministic
behaviour. This occurs when the sequences of accesses to some shared state are dependent on
the sequencing of events in the execution. For example, if a memory location is read before a
corresponding write to it has completed, the value read will not be valid. To illustrate this, consider
two following two parallel processes that both increment a count stored at a memory location x:

process P
...

a := memory[x]
a := a + 1
memory[x] := a

...

process Q
...

a := memory[x]
a := a + 1
memory[x] := a

...

If the read operation from Q is executed before P has written back the incremented value, Q will
write back the wrong value. The behaviour of the program is then dependent on the way in which
the read and write are sequenced, rather than the semantics of the program. This is called a race
condition. A program in which there are no race conditions is said to be scheduling invariant because
it does not depend on the sequencing of events in the execution [Hoa85].

Race conditions pose signiVcant problems in programming because their non-deterministic eUects
make them diXcult to reproduce and correct. They also make both formal and empirical veriVcation
of program correctness diXcult because the potential state space of the program grows exponentially
with the number of processes accessing it. As such, there are no simple or widely used techniques for
verifying the correctness of shared-memory parallel programs.

2.1.3. Consistency in distributed implementations

In implementations of shared memory that are not entirely centralised and therefore comprise more
than one physical memory (for example with per-processor caches or distributed memory systems)
the issue of memory consistency arises.
In a sequential consistency model, the order in which memory accesses are performed is Vxed for

any sequential ordering of the operations performed by a program; for a parallel program, this is a
serialisation of the execution. Sequential consistency appears to be a sensible basis for the semantics
of shared-memory programs but because there are signiVcant opportunities for relaxing aspects
of this model in the interests of improving performance, many shared-memory approaches have
adopted weak consistency models [AG96].

Weaker models of consistency remove guarantees about the ordering of reads and writes. Consider
a distributed memory system where the total memory capacity is divided into physically separate
devices but they are addressed in one logically shared space, and the access latency between diUerent
processors and memories is variable.1 If a processor P performs a write to a memory locationM
then synchronises with another processor Q that then reads fromM , no guarantee can be given
that the read will arrive after the write because network latency is variable (often referred to as non-
uniform memory access (NUMA)). To provide sequential consistency in this situation, each processor
must be informed about changes made to the memory by other processors so that a read always
returns the value written by the most recent write [LH89]. The cost of such a scheme is signiVcant
and becomes complex when performance optimisations are employed. Moreover, choosing a good
trade-oU between the programming semantics and implementation complexity and performance is
diXcult to do for a general class of programs.

1A shared-memory multiprocessor with per processor caching is conceptually similar except each processor maintains a
small subset of the global memory. Consistency issues arise because writes can invalidate cached values.

13

Chapter 2. Parallel computation

2.1.4. Message passing

Message passing has some clear beneVts over shared memory as a basis for parallel computation:

• when it is performed synchronously, it combines transfers of data with synchronisation into a
single primitive concept;

• it corresponds closely to the operation of electronic systems (and, in general, of things that
communicate) so it is simple to implement;

• it allows programs to be expressed in terms of localised communications and processing, which
makes an eXcient use of resources in distributed implementations;

• non-determinism only occurs with many-to-one patterns of communication (multiple senders
and one receiver) and can be dealt with explicitly;

• it can be formalised.

The main perceived diXculty with message passing is that it results in a programming model that
requires all communication to be managed explicitly. The consequences of this are that:

• programs lack clarity since large portions of them deal with messaging;

• representations of data are fragmented between the processes that operate on it;

• it is diXcult to express arbitrary patterns of data access.

This perception however is based on the relatively few message-passing approaches that exist, which
in general provide little Wexibility in the patterns of communication that can be expressed, primarily
with point-to-point relationships between a pair of processes (in §3.3 [p. 28], the capabilities of existing
message-passing approaches are surveyed). However, messages can also be passed one-to-many in a
broadcast, many-to-one with client-server relationships or even all-to-all in a total exchange.
A key argument in this thesis is that many-to-one patterns of communication, in particular, are

essential for dealing with the above shortcomings of current message-passing approaches. This is
because it provides a basis for sharing and thus a way to integrate the beneVts of shared memory
with those of message passing.

2.2. Models

A model of parallel computation reVnes the general concept of a parallel computation that was given
at the start of this chapter by restricting the way in which processes can evolve, are arranged and can
communicate. A model deVnes neither a programming language nor machine architecture2 but is
said to be practical if:

• it is a convenient target for the compilation of high-level programming languages;

• it can be implemented eXciently with current technologies.

A practical model can therefore be used to deVne a relationship between programming languages and
architecture. It is an essential aspect of a general-purpose approach because it provides a common
basis for the design and analysis of algorithms, programming languages and machine architectures.

In this section, the two most practical existing models of parallel computation are discussed. These
are communicating sequential processes and the parallel random-access machine.

2In this context it might also be referred to as an abstract machine or bridging model [Val90a].

14

2.2. Models

2.2.1. Communicating sequential processes

Communicating sequential processes (CSP) [Hoa78, Hoa85] is a mathematical formalism for describing
patterns of interaction in systems of concurrent processes. It is built on the primitive concepts
of message passing, parallel composition of processes and guarded commands for dealing with
non-determinism. These can be combined to express complex systems in a simple way. It is
part of the family of process calculi that includes Petri Nets [Pet77], the calculus of communicating
systems (CCS) [Mil82], which was a direct inWuence for CSP, the Actor model [Agh85] and the
π-calculus [Mil99].
Although CSP is conceptually similar to other communicating process models, its choice of

primitives make it practical both as a basis for a programming language and to implement.

• Synchronous message passing provides simple semantics and does not require buUering because
a sender always waits for the receiver to be ready to receive a message. In contrast, asynchronous
message passing (on which the Actor model is based, for example) requires buUering which
complicates theoretical analysis, can cause deadlock, can introduce ineXciency when they
grow large and can introduce latency in accessing the buUer [Hoa85, §7.3]. To note, when
buUering is required, it can be implemented simply with synchronised message passing.

• Bounded process creation prohibits the dynamic creation of processes from either parallel
recursive processes or unbounded arrays of processes. This is because the bounded case is
simpler to analyse and because dynamic process creation is diXcult to implement eXciently,
particularly with distributed memory architectures.

• Non-determinism is permitted and managed explicitly with the use of a special guarded alterna-
tive operator.

In comparison, the π-calculus is much more dynamic; it provides mechanisms for process mobility
and to communicate channels as Vrst-class entities between processes. This allows it to express
dynamically evolving systems, but it is faced with signiVcant implementation challenges in providing
a basis for a scalable parallel programming model.

The simplicity and practicality of CSP inspired the occam programming language [INM84] and the
INMOS transputer microprocessor [INM88c], as well as numerous other programming languages. It
has also found uses in many other areas of computer science [AJS05].

2.2.2. Parallel random-access machine

A parallel random-access machine (PRAM) is the parallel analogue of the RAM model and was Vrst
proposed to study the computational power of parallel machines with respect to serial ones [FW78].
A PRAM consists of an unbounded number of processors that operate synchronously in parallel and
access an unbounded shared memory. This makes it particularly suited to data-parallel computations
where collections of similar processes operate synchronously on shared data structures (the concept
of data parallelism is explained in more detail in Chapter 3).
The PRAM model is idealised because it assumes that memory accesses and synchronisation are

primitive operations that complete in the same (unit) time as regular computational operations.3

Its simplicity has provided a concrete basis for the design and analysis of parallel algorithms and
has generated signiVcant work in the development of eXcient PRAM algorithms and techniques;
see [KR90] for a survey. The idealistic assumptions it makes with respect to memory performance
pose signiVcant problems for an eXcient implementation because it ignores the practical issues
of latency, access contention and synchronisation overheads. However, a signiVcant research
eUort has generated ways that PRAMs can be emulated eXciently on practical parallel machines,

3In this respect, the PRAM is very similar to the RAM model in that it is assumes that a RAM provides accesses to memory
in unit time. However, the access time of conventional dynamic random-access memories (DRAMs) can be several orders
of magnitude larger than computational operations.

15

Chapter 2. Parallel computation

e.g. [KU88, Ran87, AHMP87]; the most prominent of these is Valiant’s bulk-synchronous parallel (BSP)
model [Val90a, Val90b].

The bulk-synchronous parallel machine model

The BSP model is capable of an eXcient implementation on practical scalable parallel architectures
and provides a compilation target for PRAM programs. It consists of a distributed-memory parallel
computer with a communication network that delivers messages between arbitrary pairs of compo-
nents that implement global read and write operations, and a (bulk) synchronisation mechanism that
can perform synchronisation between processors. PRAM programs are compiled to a BSP machine
with additional software components that deal with the distribution of memory accesses to avoid
hotspots and scheduling of multiple processes per processor to hide communication latency.
The separation of the mechanisms required to support a PRAM emulation from the underlying

architecture allows a BSP machine to be programmed directly so that it can be used with no emulation
overheads [Val90a] and to be capable of a simple implementation. This is perhaps the main reason
for its (limited) success [McC94]; other emulation schemes that include complex mechanisms directly,
such as those mentioned above, do not provide the same Wexibility.

Adoption of BSP and PRAM algorithms

Despite the apparent ability of the BSP model to provide a eXcient abstraction of a parallel computer
and to support shared-memory programming approaches, which are closely related to the practices
of conventional sequential programming, the BSP model has not yet received widespread adoption.
One reason for this is that it suUers from the problems associated with shared-memory programming
relating to communication, non-determinism and consistency that were explained in §2.1 [p. 11].
Another reason is that it is expensive to perform bulk synchronisation. Although the model allows
synchronisation for subsets of processors, without an eXcient method to implement pair-wise
synchronisation, the model does not easily accommodate less bulk-synchronous approaches such as
message passing.

2.3. Summary

The two main paradigms of interaction in parallel computation are shared memory and message
passing. Message passing corresponds directly to the concept of communication and shared memory
provides an abstraction of it.

Shared-memory is a useful tool in computations that are based on shared data with arbitrary access
patterns but it introduces a number of problems. First, implementing communication is diXcult and
leads to ineXciency, second, concurrent accesses can cause non-determinism and therefore problems
for programming and veriVcation, and third, scalable implementations incur signiVcant overheads to
maintain consistency. Message passing, in contrast, is simple to implement, can be used to express
eXcient and scalable parallel programs and, with models such as CSP, can be formalised and deal
explicitly with non-determinism. However, message-passing approaches are perceived to be low-level
and burden the programmer with the explicit management of communication, making it diXcult to
express programs clearly.
The BSP model has demonstrated that it is possible to implement high-level programming ap-

proaches eXciently on practical scalable parallel architectures, but it has had limited success. However,
the theory of universal communication networks, on which the BSP model is built, underpins the
work in this thesis and will be explained in Chapter 4.

16

CHAPTER 3.

PARALLEL PROGRAMMING,
LANGUAGES AND COMPILATION

programs

language

compilation

model

machine

This chapter discusses parallel programming. It begins by outlining the general high-level issues of
parallelism and the formulation of parallel algorithms. Then it discusses the issues associated with a
parallel-programming language by outlining a set of criteria for an eUective general-purpose parallel
programming language. Lastly, based on the proposed criteria, it surveys existing programming
approaches and their suitability for a general-purpose model of parallel computation.
The outcome of this chapter is to establish the requirements of a general purpose parallel-

programming language, in order to motivate the proposed sire programming language and to put it
in context with existing approaches.

3.1. Principles

This section discusses the two key principles that underpin the discipline of parallel programming:
problem decomposition and parallel eXciency. These transcend the details of particular programming
languages, compilation techniques and machine architectures, and are therefore foundational to the
construction of eXcient parallel computations.

3.1.1. Problem decomposition

The Vrst step in developing a parallel algorithm is to identify how it may be decomposed into a number
of independent parts that can be performed in parallel.
There are three main forms of problem decomposition [GKKG03]:

• domain, where the problem space is divided into a number of smaller parts that can be operated
on independently;

• recursive, where the problem itself is divided into a number of smaller sub-problems of the
same type;

• functional, where the problem itself is divided into a number of smaller sub-problems of
diUerent types.

In general, domain decompositions are referred to as data parallel [HSJ86], and ones that are not are
referred to as task parallel.

Domain

With domain decomposition, the computational domain of a problem is partitioned into a number
of sub-domains that can be operated on simultaneously by a number of similar processes [Gro92].
Typically, there will be dependencies between sub-domains and each parallel computation will
proceed in phases where it performs some local computation, followed by some communication
to resolve the dependencies. Dependencies often arise at the boundaries of a sub-domain. In the
case where there are no dependencies between sub-domains, parallel computations can proceed
independently with no communication.

17

Chapter 3. Parallel programming, languages and compilation

(a) the domain (b) 8× 1× 1

(c) 4× 2× 1 (d) 2× 2× 2

Figure 3.1.: Decompositions of a 3D domain (a) into a number of sub-domains in 1 (b), 2 (c) and 3 (d) dimensions
to be processed in parallel between 8 processes. The surface area of a sub-domain often relates
directly to the amount of communication that must be performed. A decomposition in just one
dimension produces an elongated sub-domain with a high surface area, as in (b), whereas in
3-dimensions the surface area is much lower, as in (d).

Domain decomposition is a natural way to employ parallelism since it separates communication
and computation and it produces algorithms where the problem size can easily be scaled to increase
the level of parallelism and performance. Figure 3.1 shows some examples decompositions of a
3-dimensional domain.
Many problems in HPC can be eUectively parallelised with domain decomposition and due to the

large nature of the problem they are trying to solve, they can be scaled up to operate on very large
machines. For example, many simulation algorithms are structured as grids where each point on the
grid updates according to the state of a small number of neighbouring points. These connections
may have a regular pattern, for example in weather simulations where the atmosphere is partitioned
into three dimensional blocks [LCD+08], or they may not, for example in adaptive mesh reVnement
computations where the domain is more Vnely discretised in areas of interest [BO84].

Recursive

With recursive decomposition, a problem is solved by dividing it into a number of independent
sub-problems of the same type. Each of these is solved in parallel using the same approach, until
a termination condition is reached. The results of each of the sub-problems are then combined to
obtain a Vnal result. This is also known as a divide-and-conquer approach.
As an example, consider an algorithm that calculates the nth Fibonacci number Fn recursively. It

begins by creating processes to calculate Fn−1 and Fn−2. Each of these creates further processes to
calculate their components. Figure 3.2a illustrates the structure of this decomposition. Although
this algorithm is an ineXcient way to perform the calculation since much of the computation is
redundant, it highlights that recursion is a useful way to create large amounts of parallelism; parallel
recursion will be exploited for this reason later in Chapter 8. A more-eXcient recursive algorithm, for
example, is mergesort which successively divides a list into smaller sub-lists until they contain only
one element. Sub-lists are then combined in order to produce a single sorted list in a total number of
steps, logarithmic in the size of the list. Figure 3.2b illustrates this.

18

3.1. Principles

F6

F5

F4

F3

F2 F1

F2

F3

F2 F1

F4

F3

F2 F1

F2

(a) calculating the 6th Fibonacci number

8, 7, 6, 5, 4, 3, 2, 1

8, 7, 6, 5

8, 7

8 7

6, 5

6 5

4, 3, 2, 1

4, 3

4 3

2, 1

2 1

1, 2, 3, 4, 5, 6, 7, 8

5, 6, 7, 8

7, 8 5, 6

1, 2, 3, 4

3, 4 1, 2

(b) mergesort

Figure 3.2.:With a recursive decomposition of a problem it is successively divided into smaller independent
sub-problems, until these can be solved directly. The solved sub-problems are then successively
combined to solve the main problem. In (a) the n+ 1st Fibonacci number is calculated by summing
the nth and n − 1th numbers and F1 = F2 = 1. In (b) a sequence of numbers can be sorted by
successively diving it into smaller sub-sequences until they contain only one number. These are
then successively merged to obtain a sorted sequence.

An important class of algorithms that are based on recursive decomposition are branch-and-bound
algorithms [GC94]. These are used to solve combinatorial optimisation problems that have a large
solution space. They explore this space looking for feasible solutions, but since the space is too large
to exhaustively search they employ a means of identifying regions of the space that lie outside a
range of best current feasible solutions so that they can be ignored.

Functional

With functional decomposition (or conversely functional composition), a problem is decomposed
(respectively composed) into a number of components with diUerent behaviours. Functional de-
composition into a set of parallel processes will only yield performance beneVts proportional to the
number of components. It is however, an important tool in managing the complexity of a program by
separating the functionality of diUerent components and mediating their interactions with minimal
interfaces. For example, when two diUerent operations must be performed on overlapping portions
of data, it is diXcult to combine these sequentially but they can easily be separated to be executed in
parallel [JG88].
The use of functional decomposition and the role of programming abstractions is discussed later

in §3.2.1 [p. 25].

3.1.2. Parallel efficiency

A key reason to employ parallelism in execution is to reduce the running time. With p processors, one
ideally wants a factor of p reduction in running time. This is the same as in sequential computation,
where a factor f increase in processor clock speed can deliver up to a factor of f improvement in
execution time. However, the movement of data between processors constituting communication,
incurs a latency relating to its transmission. This can cause processors receiving data to become idle
with the eUect that the resulting speedup of the system moves away from p. For the eUectiveness of a
parallel program to be judged, it is therefore necessary to quantify these aspects of parallelism.
Kruskal et al. argue the performance of a parallel algorithm (which are the constituents of par-

allel programs) is judged with respect to the best-known sequential algorithm for the same prob-
lem [KRS90].

19

Chapter 3. Parallel programming, languages and compilation

DeVnition 3.1 (Parallel speedup). For a given problem with input size n, let Ts(n) denote the
sequential running time of the best known algorithm and T (n) denote the parallel running time.
Then the parallel speedup S is the ratio between Ts and T :

S(n) =
Ts(n)

T (n)

The speedup indicates the improvement in performance due to parallelism. However, a reduction
in running time requires an investment in processors. A speedup of S requires at least S processors,
but due to ineXciencies it will be more. Speedup alone does not therefore capture how well the
available processors are utilised.

DeVnition 3.2 (Parallel eXciency). The parallel eXciency, E, of an algorithm is measured by how
well each processor is utilised, the ratio of speedup to the number of processors used. Let p(n) denote
the number of processors, then

E(n) =
S(n)

p(n)
=

Ts(n)

p(n)T (n)

With an ideal parallel algorithm, there is no ineXciency due to communication and idling overheads,
and a maximal speedup is obtained with an eXciency of one. Since any parallel algorithm must
necessarily perform some communication there will be some level of ineXciencywith the consequence
that S(n) < p(n) andE(n) < 1. In general, an algorithm is considered eXcient and therefore scalable
when the eXciency is a constant independent of p and n.

It is interesting to note that parallel eXciency, as deVned in DeVnition 3.2, implicitly assumes that
processors are a scarce resource in a parallel system and the most eUective use of such a system is
with their full utilisation. This holds in general for large-scale systems such a supercomputers but as
the cost of a processor diminishes, relative to other system components such as the interconnect or
in terms of power, then alternative characterisations of eXciency will be required that are taken with
respect to these factors.

Obtaining high efficiency

Each processor in a parallel machine may be performing some computation or have no useful work to
do and be idle. A perfect speedup is obtained only when all processors are fully utilised and engaged
in local computation. Therefore, to make a good utilisation of a parallel machine, the time in which
processors are engaged in communication or spend idling must be minimised.

The following points outline several ways that machine utilisation can be improved. Each one could
potentially be provided by a programming language automatically, or implemented as a programming
approach.

• Granularity. Decomposition of a problem should aim to expose as much parallelism as possible,
but for the resulting algorithm to execute eXciently it must make a good utilisation of the
machine that it is running on. This is related to the program’s granularity, the amount of work
that each process performs, since creating and terminating parallel processes and performing
communication adds overhead to a computation. If there is less work in a process than the cost
of initiating it or the cost of communication outweighs the computation that takes place as a
result, then it is more economical to execute it sequentially.

The granularity of a parallel program can be adjusted to match that of a particular machine
by serialising its execution. This can be done manually by expressing it as the combination of
parallel and sequential components or automatically by the compiler by combining groups of
processes. The amount of parallelism can then be decreased (respectively increased) and the
amount of work performed by each sequential process increased (respectively decreased).

20

3.1. Principles

• Latency hiding. When a communication requires a response, the sending process will have to
wait until the response is received. The duration of this wait is related to the communication
latency. The processor that is executing this process will idle if it has no other work that it
can perform. However, by maintaining a small set of processes it can choose a diUerent one
that is not blocked by a communication and execute it, thereby hiding the latency associated
with the communication. This approach is often referred to as overlapping computation and
communication. Asynchronous or non-blocking communication operations achieve the same
eUect.

• Load balancing. Computational load must be evenly distributed over a machine so that
processors remain busy and do not idle. Many computations, such as BSP and data-parallel
algorithms, proceed in a sequence of phases with synchronisation performed at the end of
each phase. The length of the phase is determined by the slowest participant, and during
the time taken for it to complete, every other process is idle. When this gap is large, there
is signiVcant scope for ineXciency. This can only be avoided if the execution time of each
process is predictable and if it is not then a more-adaptive structure must be employed.
Load balancing is also an important issue for computations that evolve in an unpredictable

or irregular way. An eUective and scalable method is work stealing where processes maintain
a queue of work to perform and when this becomes empty, ‘steal’ work from queues of
neighbouring processes, thereby diUusing work over the system.

• Redundant recomputation. The costs of communication can be avoided entirely if it is possible
simply to recompute a particular result locally, rather than being sent it. This is only economical
if the cost of recomputing is less than the communication.

• Local operations on data. Communication can also potentially be reduced signiVcantly by
moving a computation to operate locally on data, rather than moving or copying all of the
data to be operated on. This is because, in general, the size of a computational procedure
will be signiVcantly less than the data on which it operates. In a data-driven computation the
execution of a parallel operation over a dataset is scheduled on the basis of the data layout,
rather than the ordering of parallel operations.

3.1.3. Algorithmic paradigms

An algorithmic paradigm is a concept that underpins a class of algorithms [Flo79]. These are
commonly employed high-level methodologies that deVne the overall behaviour and pattern of
communication in a collection of processes. There are a number of familiar paradigms in sequential
programming, such as object-orientated, functional and event-driven. It has also been observed that
a relatively small set of paradigms underpin many eUective parallel programs by providing simple
ways to express high degrees of parallelism. These include regular arrangements composed of similar
processes, to express domain or recursive decompositions. Other paradigms characterise the natural
Wow of data internally or externally to a computation or the interface between diUerent functional
components.
A number of diUerent characterisations of a set of parallel-programming paradigms have been

proposed, for example, with Kung’s computation models for systolic arrays [Kun88a], Cole’s Algo-
rithmic Skeletons [Col89], Brinch Hansen’s paradigms for computational science [Han95b] and derived
from Brinch Hansen’s paradigms, the Berkeley Dwarfs [ABC+06]. Other work has built on these
ideas to integrate them into a software engineering discipline, for example, in the shared-memory
programming models of Mattson et al. [MSM04].

Enumeration of these paradigms is important since they represent a range of programming styles
that provide both valuable guidance for the design of a programming language and benchmarks for a
general-purpose parallel architecture. This section outlines the Vve general paradigms, that occur
in a variety of parallel programs from the spectrum of computing applications from computational

21

Chapter 3. Parallel programming, languages and compilation

Paradigm General characteristics

shared memory data decoupled from computation, arbitrary access patterns
process structures synchronised point-to-point communication in Vxed patterns
data Wow structures synchronised unidirectional point-to-point communication in Vxed patterns
task farms independent tasks with unpredictable run times
event handlers dealing with events that occur at unpredictable times

Table 3.1.: A summary of the diUerent parallel-programming paradigms.

memory

processes

Figure 3.3.: An illustration of the shared-memory paradigm in which a collection of processes are able to
randomly access a shared-memory space. This is similar to the PRAM model of computation.

science to embedded computing. They also serve to capture the existing characterisations mentioned
above. The following Vve paradigms are summarised in Table 3.1.

Shared memory

With a shared memory, a number of processes are able to concurrently access an area of storage.
There is no explicit communication, but data can be passed between processes by writing to and
reading from shared locations. This is the form of the parallel random access machine (PRAM)
model of computation, which was explained in §2.2.2 [p. 15]. Figure 3.3 illustrates the structure of a
shared-memory computation.

Shared memory is particularly useful for expressing data-parallel computations where a collection
of synchronised processes operate over a region of memory and for expressing computations in
which the access pattern is arbitrary. Furthermore, shared memory provides an abstraction from the
distribution and management of data over physical storage locations, and a natural separation of data
from a computation. A consequence of this however is that there is no data locality.

Process structures

A process structure is a collection of message-passing processes connected by communication channels.
The operation of a process structure is based on localised processing and communication; the data
for a problem may be distributed amongst the component processes and the computation proceeds as
a sequence of local computations and locally synchronising message exchanges.

A regular communication structure is one where the connections follow a pattern. Common exam-
ples of regular process structures are pipelines, low-dimensional grids, trees and hypercubes [Lei92].
Figure 3.4 illustrates some of these. An irregular communication structure is one where the connec-
tion pattern is not deVned by a pattern. For example, some problems in computational science are
based on unstructured meshes. However, it is important to note that regular structures are essential
in formulating large numbers of processes in a scalable way [MC80, Ch. 8], [May88].

Data-flow structures

A data-Wow structure is similar to a process structure except that communication channels are
directional and data is ‘streamed’ from one end to another. Each component process receives some
data on input channels, performs a local computation and outputs some data. Data-Wow structures

22

3.1. Principles

(a) 2D grid (b) hexagonal array
(c) cube

Figure 3.4.: Regular process structures where processes are connected with bidirectional message-passing
channels according to a simple pattern.

(a) pipeline

(b) tree
(c) cube

Figure 3.5.: Regular data-Wow structures similar to those in Figure 3.4, except that communication links are
directed and additional links are needed to source and sink data to and from the network.

are suited to the implementation of data-parallel computations for signal, image and audio processing,
especially in an ‘on-line’ fashion when data is being generated in real-time from an input such as a
sensor. Figure 3.5 shows some example regular data-Wow structures.

Regular data-Wow structures where communication is globally synchronised are known as systolic
arrays [Kun82], deriving from the similarity to the human circulatory system. They were originally
developed for specialised very large scale integration (VLSI) architectures with global clocking and
have proven to be an eUective way to implement a broad class of algorithms algorithms [Kun88b].
When operating asynchronously, each process is driven by local pairwise communications. This is
referred to as a wavefront array [Kun84] and this is the natural way to implement a systolic array
with message passing.

Task farms

A task farm is used to solve problems that can be decomposed into a number of sub-problems that
can be solved independently (so-called embarrassingly parallel problems). It consists of a farmer
process and a number of worker processes. The farmer maintains a queue of outstanding work to be
performed and assigns jobs to the workers when they are idle. Results from completed work might
be returned back to the farmer or output to a shared structure. Figure 3.6 illustrates a simple task
farm. For more complex problems, a number of farmers might be organised in a hierarchy to provide
diUerent processing stages [Hey90].
Task farms provide a simple mechanism for balancing the computational load between workers,

which operates in a similar way to work stealing (see §3.1.2 [p. 21]). This allows task farms, in many
cases, to obtain near optimal speedups (particularly when the amount of work is large with respect to
the distribution of work and combination of results that is performed by the farmer) i.e. for a problem
size n, when E(n) ∼ 1. In computations where the time each sub-problem takes to solve can be
unpredictable, using a synchronised algorithm will cause many of the component processes to idle
between synchronisations, resulting in a poor processor utilisation.

23

Chapter 3. Parallel programming, languages and compilation

farmer

w
ork

re
su
lt
s

workers

Figure 3.6.: In the task farm paradigm a ‘farmer’
process maintains a queue of outstand-
ing items of (independent) work and
distributes them amongst a number of
workers based on their activity. This
provides a natural mechanism for load
balancing.

handler
event

processes

Figure 3.7.: An event handler is a process that reacts
in response to a particular event or set
of events, performing some action when
they occur. Events may be caused by
internal components of the program or
from external interaction.

Event handlers

An event handler deals with a processes that interact at unpredictable moments. It may provide an
interface with external input or be components of the program that have unpredictable behaviour.
Figure 3.7 illustrates the event handler paradigm.

Composition

Many programs will naturally be expressed as a combination of the above Vve paradigms. The
following outline potentially useful compositions.

• Shared data structure. A shared data structure implemented as a shared memory in composition
with a computational program component. This could be a collection of independent processes,
a task farm or a process structure. Furthermore, the program component could itself be
composed a sequence of parallel and even sequential components.

• Message-passing functional composition. Message-passing process or data-Wow structures can be
combined in parallel in a functional composition to create more complex program structures.

• Embeddings. Any paradigm can be employed as part of a parallel subroutine by a process. Since
a process might be a component of another structure, this can be seen as an embedding.

3.2. Criteria for a general-purpose parallel-programming language

A programming language is a notation for human beings to express a computation that can be
compiled to execute on a machine, or class of machines. It provides to a programmer an abstraction
of the underlying architecture, hiding details that are not directly relevant to the speciVcation of
a computation [Hoa73] (this is the language abstraction that was illustrated in Figure 1.1). This
abstraction typically involves dealing with the complexities of resource management, such as memory
and processors. The choice of this abstraction depends on obtaining a balance between what provides
the programmer with the most expressive power and what can be eUectively compiled to run
eXciently.

This section proposes the following criteria for a general-purpose parallel programming language
and discusses the requirements of each one. For clarity in the context of this thesis, the criteria do not
include other potential criteria such as syntactic issues, formal veriVcation, debugging or sequential
features.

24

3.2. Criteria for a general-purpose parallel-programming language

1. support for programming abstraction;

2. support for data abstraction;

3. support for general parallelism;

 expressiveness

4. execution eXciency.

The criteria labelled with ‘expressiveness’ enable the language to support the simple expression of
programs and are at odds with the execution eXciency. These criteria provide a basis for the survey
of programming approaches in §3.3 [p. 28] and motivate the design of sire and its compilation scheme.

3.2.1. Expressiveness

Support for programming abstraction

The ability of a programming language to support the construction of abstractions is fundamentally
important [DDH72] since programs in general are complex and cannot be understood all at once.
Programming abstraction is based on the principle of compositionality that states the meaning of
a whole is determined by the meanings of its constituent parts and the rules used to combine
them [Pel94]. With this, a program can be constructed as composition of components, in a layered
hierarchy, where the internal behaviour of each component is simple enough to be understood in
isolation and the combined eUect of their external behaviour constitutes the whole [Han77].
The importance of abstraction in programming was recognised by Turing in the 1940s and

his design for the Automatic Computing Engine (ACE), which included support for subsidiary
operations [Tur46], or subroutines as they are now known [Whe50].
The concept of abstraction to reduce complexity depends on the representation chosen for some-

thing adequately characterising it. If it does not, then additional details of the object in question
have to be considered, thereby breaking the principle of compositionality. When this happens, the
abstraction provides no signiVcant reduction in complexity. For example, if a program component
behaves diUerently in combination with other components than it does in isolation, then the internal
details of the component must be explicitly considered and the abstraction is lost.
It is also interesting to note that the machine abstraction provided by the basic computational

model can also be broken if a programming language contains machine-orientated features. In this
case, the behaviour of a program will not be understandable only in terms of the language, and
therefore the details of the compiler and the machine also have to be considered [Han77].

Support for data abstraction

Data are simply values belonging to a set, but in a computation it is necessary to structure them in
way that allows them to be accessed and manipulated. The storage of data items is typically based
on a single contiguous and randomly-accessible memory; a high-level structuring of the data, such
as a queue, list or tree, must be mapped to this. In a distributed machine, the mapping must also
correspond to each distinct memory.
A data structure therefore consists of two components:

• a representation of the data;

• a set of basic operations that allow the representation to be manipulated.

Following Hoare’s characterisation of a data structure [DDH72, Ch. 2], these operations are basic
in the sense that their implementation is heavily dependent on the chosen representation, and a
representation is generally chosen to minimise the amount of storage and permit eXcient basic
operations. The number of basic operations that should be provided by a data structure is arbitrary,
but the guiding principle is that their capability should be suXcient that any other operation can be
deVned in terms of them.

25

Chapter 3. Parallel programming, languages and compilation

It is generally regarded as good programming practice to separate the details of a data structure
implementation from the abstract properties of the interface it presents to the program, sometimes
called its data type.1 This is due to the same reasons that were explained in the previous section
(§3.2.1 [p. 25]), because it reduces complexity and allows improvements or even substitutions to be
made to the data structure that respect the same external interface.

Data abstraction therefore relates to the way that data structures are separated from computational
structures. For distributed systems (as opposed to von Neumann-based shared-memory ones) a data
representation must specify a distribution over a collection of memories with mappings between
each data element and processor and memory location. Finding a good trade-oU between high-level
notations to deal with this and eXciency of an implementation has proven to be diXcult; various
approaches are surveyed in §3.3 [p. 28].

Support for general parallelism

A general-purpose language must support the expression of a wide class of parallel programs. Given
that a small set of paradigms underpin a broad class of programs (a characterisation of these were
outlined in §3.1.3 [p. 21]), it is essential that the expression of these paradigms and their composition
with one another is made convenient [Flo79].

3.2.2. Execution efficiency

The issues relating to the simple expression and comprehension of programs, captured in the previous
criteria, compete to a large degree with the eXciency, in terms of the program size and execution
time, that can be obtained with the corresponding compiled machine code. A language that ignores
the issue of machine eXciency may rely on sophisticated compiler technology to deal with this
automatically, but there are serious disadvantages to taking this approach [Hoa73]:

• the complexity of the compiler will require a signiVcant period of time for its development and
veriVcation, and the resulting program will be large and execute slowly;

• the translations and optimisations employed by the compiler will likely exhibit pathological
behaviours in some circumstances, which can not be predicted by the programmer without a
knowledge of the compilation, and will result in ineXcient execution;

• diUerent compilers may vary in their approaches, with the consequence that the programmer
has no control over the eXciency of their program.

A language that can be compiled in a straightforward manner to a target machine architecture will
avoid these problems since it narrows the scope of implementation options for compilers and reduces
their complexity. This allows compilation to produce compact and eXcient executable programs,
providing the programmer with a transparent execution model and responsibility for the performance
of their program. Furthermore, if the language has clear, well-deVned semantics, then it may be
possible to implement particular features by translating them to a canonical form in terms of a smaller
set of language features, or to apply optimisations with transformations. This can be performed
independently of any machine with the results understandable to the programmer.

A balance must be struck between the competing aspects of the expressive power of a programming
language and the use of a simple compilation strategy to produce eXcient executable programs. It is
highly unlikely that both can be achieved without support from the underlying machine architecture.
A key argument in this thesis is that a parallel architecture must support an eUective machine

1It can be argued that object-orientated programming is an exception to this, since a class is designed to encapsulate both
the details of the implementation of a data type and computational procedures associated with it. However, this style of
structuring is usually applied at a higher level, and standard data structures such as lists and tables are implemented as
classes in their own right.

26

3.2. Criteria for a general-purpose parallel-programming language

abstraction so that the implementation and use of programming languages is relatively simple, for all
of the reasons outlined in this section.

Resource management

The key concern with the abstraction provided by sequential programming languages is to hide the
management of memory but in general, the greater the degree of automatic memory management, the
less eXcient the execution because of the additional time spent executing the management routines.
The least dynamic schemes, where memory is allocated at compile time for static variables and

stack frames, have the beneVt of eXciency and determinism. Memory allocation performed at run
time incurs signiVcant performance overheads because the state of memory must be maintained with
internal data structures. Automatic deallocation such as garbage collection causes further ineXciency
that is not under the programmer’s control.

The use of memory allocation mechanisms depends on the application and limitations of a machine.
For ‘fast’ conventional sequential machines with large memories, the performance overhead of highly
dynamic languages that leave everything to the run time can be considered an acceptable price to
pay for their ease of use and resulting programmer productivity. In contrast, for embedded systems
with slower processors, limited memory and applications with real-time requirements, predictable
behaviour is essential.
In contrast with sequential computation, parallelism introduces a richer set of resources with

collections of processors, memories and communication channels. A computation requires the
creation and termination of threads of sequential execution and their activities to be coordinated with
communication and synchronisation. This must be mapped to and scheduled on the target machine
either explicitly by the programmer, implicitly by the compiler or at run time. Since a programmer is
interested primarily in introducing parallelism to improve performance,2 the management of these
resources is central to the abstraction provided by a parallel-programming language and its ability to
support programming abstractions.3 The management of resources for parallelism is analogous to
memory management in sequential machines.
The greater the level of abstraction provided by a parallel-programming language, the less a

programmer is concerned with the low-level details of a parallel machine. There is a trade-oU
between the level of abstraction and the performance and predictability of programs expressed with
it. As the level of resource management that is hidden from the programmer increases, then the
extent to which it must be dealt with at run time increases accordingly.

3.2.3. Summary of criteria

The following summarise the criteria for a parallel programming language.

1. Support for programming abstraction: abstractions are fundamentally important to programming
since they allow a program to be constructed as a composition of parts, where only the external
behaviour needs to be considered, allowing the details of the implementation to be ignored.
Parts may be subroutines, modules or libraries.

2. Support for data abstraction: separating the details of a data structure implementation from its
abstract interface yields the same beneVts as the previous criteria, but it depends on an ability
to eUectively separate a representation of data from other components.

3. Support for general parallelism: a general-purpose language must make convenient the expres-
sion of a wide class of parallel programs.

2They might also be concerned about reducing power consumption by executing more tasks in parallel at a slower clock
frequency to exploit the quadratic relationship between voltage and power.

3It is interesting to note that dynamic resource allocation in parallel machines can introduce the opportunity for deadlock
and non-determinism. Deadlock results from cyclic resource dependencies and non-determinism can result from the
insuXcient resources because it is dependent on the scheduling of processes and order of allocations and deallocations.

27

Chapter 3. Parallel programming, languages and compilation

commodity
∼ 109 devices

embedded
> 1010 devices

HPC
< 106

devices

Figure 3.8.: The spectrum of computing with its three main application areas. A Vrst-order approximation of
the total number of devices worldwide is given for each one to emphasise their relative sizes.

4. Execution eXciency: a language that provides an eUective abstraction of the machine archi-
tecture enables it to be compiled in a simple way to execute eXciently and predictably. This
provides a transparent execution model, placing the programmer in control of the performance
of their program. The issue of eXciency is related primarily to the management of resources
such as processors, components for communication and memory.

3.3. Survey of programming and compilation approaches

This section surveys existing parallel-programming approaches and compilation techniques, with the
main emphasis on those that are scalable i.e. distributed and non-von-Neumann. This excludes many
multithreaded parallel languages since they target shared-memory multiprocessors and employ cen-
tralised resources; it is therefore unlikely that they can be implemented and executed eXciently with
distributed memory since communication will become concentrated around a single processor. For ex-
ample, Cilk [BJK+95] and OpenMP [CMD+00] are considered mainstream programming approaches
but their implementations target shared memory and employ a centralised thread scheduler.
The survey is representative of the main approaches taken in scalable parallel programming, but

does not attempt to be exhaustive. Table 3.2 provides a summary of the approaches discussed and
their distinguishing features.

3.3.1. Application areas

It is useful to Vrst outline the main areas of computing and their deVning characteristics, since these
have a large bearing on the design of the programming languages and compilation schemes employed
for them. Figure 3.8 illustrates this spectrum of computing devices comprising at one end, large-scale
high performance systems, of which there are of the order of hundreds of thousands worldwide, to
small-scale embedded systems, of which there are billions worldwide. Lying between these are (of the
order of hundreds of millions of) commodity devices such as desktops and servers.

High-performance computing systems

HPC is the domain of large-scale systems. HPC systems that are used to run single programs are
referred to as supercomputers. These are at the forefront of absolute computing performance and have
necessarily had to employ parallelism and high-performance interconnection networks to achieve
this. Due to the scale of supercomputers systems, the only feasible physical memory architecture
that they can use is distributed. Modern systems for instance, are vast arrangements of tens or
hundreds of thousands of processors that occupy hundreds of square metres of space. Consequently,
supercomputing has historically been the area in which distributed parallel programming languages
have received the most attention.

Supercomputers are used for computationally intensive tasks such as simulation and modelling in
science and industry. They share the following general characteristics:

• the amount of memory per processor is large;

28

3.3. Survey of programming and compilation approaches

• the communication bandwidth is high but, in general, the latency of establishing communica-
tions is also high, restricting communication to large messages.

There are also some general characteristics of supercomputer applications:

• the computation is highly parallel;

• the problem size is large and in some cases can be scaled arbitrarily, such as in simulations
where further accuracy is always desirable;

• there is no external input or any real-time constraints, computations are launched and results
are returned in a number of hours or days later.

Embedded systems

An embedded computing system is designed to perform a particular function as part of a larger system.
They typically employ general-purpose processors, in the sense of being able to execute general-
purpose programming languages, due to the expense of producing application-speciVc integrated
circuits (ASICs) and the programming challenges associated with Veld-programmable gate arrays
(FPGAs). Embedded systems are used, for example, for control tasks, signal processing, and controlling
user interfaces in systems such as robots, consumer electronics and medical equipment. The main
characteristics of these systems are:

• a small physical form factor;

• limited power, particularly when powered by a battery, and consequently a slow clock fre-
quency;

• limited memory;

• a requirement to interface with external input or output, which necessitates real-time perfor-
mance constraints.4

Commodity systems

Commodity computer systems are intended for general use and comprise the broad area of consumer
devices, such as desktop and laptop personal computers, and server devices that are used to provide
resources such as web pages, email or storage. Although server devices are typically deployed in large
numbers in data centre-type facilities, they are used to run many independent jobs and therefore do
not require the same degree of intraconnectivity that supercomputers do. Commodity computing
systems employ shared-memory architectures with SMPs and increasingly, attached GPU devices
where, in general

• the amount of shared memory and caching is large;

• processors are run at a fast clock speed.

• their real-time requirements are typically soft, of the order of milliseconds and related to
responding to user input.

It is interesting to note that general-purpose ‘desktop’ applications, such as word processors,
web browsers and games obtain an average speedup from parallelism of around 2, which has not
changed signiVcantly in the last 10 years, despite there being a great deal more parallelism available.
In contrast, domain-speciVc applications such as video transcoding make a high utilisation of
commodity devices [BDMF10]. However, these systems make signiVcant use of task-level parallelism
to provide multitasking when a number of (independent) programs execute concurrently. This
approach increases the aggregate computational throughput.
4 Real-time constraints may be hard if the behaviour of the system is heavily dependent on internal deadlines, where the
system may crash or become dangerous if they are not met; soft constraints on the other hand relate to an acceptable
degradation in the behaviour of the system.

29

Chapter 3. Parallel programming, languages and compilation

Name Citation Appeared Paradigm Area Resource
management

Communicating process
Occam [INM84, INM88b] 1983 message passing Em/GP compile time
Linda [Gel85] 1985 shared memory GP dynamic
Joyce [Han87] 1987 message passing GP dynamic
Strand [FT90] 1989 declarative GP dynamic
CA [CD90] 1990 OO, global name space GP dynamic
LUSTRE [HCRP91] 1991 data Wow Em/GP static
Ease [Zen92b, Zen92a] 1992 shared memory GP dynamic
PCN [FOT92] 1992 declarative GP dynamic
CC++ [CK93] 1993 OO, global name space GP dynamic
SuperPascal [Han94] 1994 message passing GP dynamic
Fortran M [FXA94] 1995 message passing GP dynamic
Charm [KRSG94, RSSK94] 1995 OO, global name space HPC dynamic
StreamIt [TKA02] 2002 data Wow Em/GP static
Occam-π [WB05] 2005 message passing GP dynamic

XC [Wat09] 2005 message passing Em compile time

Functional
ZAPP [BS81, MS87, MS88] 1981 functional GP dynamic
SISAL [MSA+83] 1983 functional GP dynamic
SCL [DGTY95] 1993 functional GP dynamic

NESL [Ble95] 1995 data parallel, functional GP dynamic

Communication libraries
PVM* [BDG+91] 1991 message passing HPC dynamic
SHMEM* [BK94] 1994 distributed shared memory HPC static
MPI* [WD96] 1996 message passing HPC static

GASNet* [Bon02] 2002 distributed shared memory HPC static

Data-parallel
CM Fortran [BHMS91] 1991 data parallel HPC static
Fortran D [FHK+90] 1991 data parallel HPC static
Vienna Fortran [CMZ92] 1992 data parallel HPC static
HPF [KLS93] 1993 data parallel HPC static

ZPL [CLC+98] 1998 data parallel HPC static

PGAS
Global Arrays* [NHL94] 1994 data parallel HPC static
Co-array Fortran [NR98] 1998 data parallel HPC static
UPC [CDC+99] 1999 data parallel HPC static
Titanium [YSP+98] 1998 data parallel HPC static
X10 [CGS+05] 2004 shared memory HPC mixed
Fortress [ACH+05] 2005 shared memory HPC mixed
Chapel [CCZ07] 2007 shared memory HPC mixed

Table 3.2.: Summary of parallel-programming languages and libraries (denoted by ‘*’) discussed in the survey.
The following abbreviations are used: general purpose (GP), embedded (Em) and object-orientated
(OO).

30

3.3. Survey of programming and compilation approaches

3.3.2. Communicating process programming

This survey begins with programming models that are based on communicating processes, and in
particular the occam programming language, because occam is the basis of the proposed sire language.
In general, a communicating-process model considers processes and interaction to be the most

important abstractions in computation [Han90] and diUerent approaches are characterised primarily
by the way in which communication is performed, which can be message passing, data Wow, remote
procedure calls or through shared data.

Occam

Occam is a general-purpose programming language [May83, INM84] that was developed at INMOS
in the 1980s. It was based on an earlier language EPL [MTWS78] and the principles of CSP. Occam
takes a minimal approach with the smallest set of features that were adequate for its purpose.5

Occam programs are expressed as hierarchical collections of processes, which can be nested,
composed in sequence or composed in parallel. Processes executing in parallel are connected by
message-passing point-to-point channels, which can be named and used as procedure parameters,
thereby providing a mechanism for abstraction. Its message-passing approach and alternative operator
for dealing with non-determinism (based on that of CSP) allows the expression of a variety of forms
of parallelism, in particular, process and data Wow structures, task farms and event handlers, which
can all be combined arbitrarily.
A key principle of occam, adopted from CSP, is scheduling invariance, or the absence of race

conditions. An occam program (that does not make explicit use of non-determinism with alterna-
tives) executes deterministically, no matter how the execution is scheduled. This is to simplify the
construction of parallel programs. Scheduling invariance is enforced with process disjointness with
the following rules:

1. by ensuring no shared variable can be updated or shared channel can be output to;

2. by synchronising channel communication so messages are always guaranteed to be received;

3. by allocating resources at compile time, which includes processors, communication channels
and memory, thereby avoiding any run-time allocation.

The simplicity of occam, combined with well-deVned semantics and control of side-eUects, gives
it algebraic properties [RH88], permitting formal veriVcation of correctness and transformations to
convert programs to more convenient equivalent forms. Furthermore, the economy of features and
the careful choice of their behaviour allow it to be compiled in a simple manner to execute eXciently.
It was developed alongside the INMOS transputer architecture [INM88c], which was intended to be a
natural target for it, but it can also be implemented eXciently on diUerent architectures and even
used as a hardware description language [May91]. Later versions of occam preserved its main aspects
but extended it with features, particularly in the type system, to support better software engineering
practices.6

Occam provides good support for programming abstraction and general parallelism while maintain-
ing a simple compilation process and eXcient execution, these fulVlling most of the criteria outlined
in §3.2 [p. 24]. However, because it does not provide any mechanisms for sharing, occam can not
be used to express shared-memory structures which are important when the access patterns are
unknown and, in general, sharing is essential for developing data abstractions and higher forms of
abstraction.
5It employs the principle of Ockham’s razor (after which it was also named) which was developed by William of Ockham,
a 14th century Philosopher.

6Occam 2 [INM88b] and 2.1 [SGS95] were the main revisions, but another version, occam 3 [Bar92], which was actually
developed shortly after occam 2 but never implemented, proposed a number of features for expressing program modules
and libraries. This included a client-server type notation with call channels that provides a remote procedure-call
mechanism.

31

Chapter 3. Parallel programming, languages and compilation

Occam variants

Some of the main criticisms of occam are that it is too low-level and too restrictive, requiring the
programmer to deal with resource allocation and communication. Apart frommechanisms for sharing,
these were mainly related to an eXcient distributed implementation. A number of languages have
attempted to relax some of the restrictions, in particular, by adding recursion and permitting dynamic
sizing of arrays or collections of processes. These include Joyce [Han87], SuperPascal [Han94], an
experimental version of occam with recursion [Dav00], which was based on the same scheme used in
the implementation for SuperPascal [Han95a], and occam-π [WB05], which adds further dynamism
inspired by the π-calculus with process and channel mobility. However, these approaches are all based
on a multithreaded implementation with shared memory and can therefore employ conventional
techniques for dealing with this dynamism. Recursion and dynamic processor allocation remain
diXcult mechanisms to implement eXciently on a distributed architecture.7

The XC programming language [Wat09] is based heavily on occam with C-style syntax and designed
to exploit the XMOS8 XS1 architecture [May09], which is designed for use in embedded systems. XC
and the XS1 architecture bear many similarities to occam and the transputer but the most signiVcant
diUerence is the ability to support eXcient input and output on chip IO pins, and deterministic
execution with high-level programming. This approach enables programs to be expressed that can
implement behaviour usually associated with hardware, such as digital communication protocols,
giving it an advantage over the conventional approach of using a hardware description language and
an FPGA or custom ASIC.

Data-flow languages

A data-Wow computation corresponds to the data-Wow structure paradigm described in §3.1.3 [p. 22].
In the same way a data-Wow structure is a special case of a process structure, a data-Wow computation
can be viewed as a special case of message passing when all communication channels are directed.
Data-Wow languages have a rich history [WP94] and have been employed, for example, in embedded
systems for digital signal processing (DSP) and for hardware design. They bear similarities to
functional languages due to their absence of side eUects and consequent implicit parallelism. The
languages LUSTRE [HCRP91] and StreamIt [TKA02] are described as exemplars of this programming
approach.

LUSTRE is a declarative data-Wow language designed both for embedded control systems that must
react quickly to events and for describing hardware. A program is expressed as a composition of
functions, called nodes. The input and outputs of the functions deVne the Wows of data. LUSTRE
is a synchronous data-Wow language, meaning in that the input and output rate of each process is
known at compile time and all computation and communication can be scheduled statically. This
gives the programmer control over temporal aspects of the program, which is essential for real-time
applications. Since LUSTRE programs are mainly used for control, the need for distributed execution
arises from the coordination of events in diUerent locations [CG95].
StreamIt is an imperative language in which asynchronous data-Wow computations are expressed

as a collection of sequential processes, called Vlters. Filters are joined by streams and are composed
with constructs to split, join, feedback and pipeline streams. StreamIt programs are compiled by
converting them into a data-Wow graphs, which are then mapped to a target architecture to balance
computational load [IWM+02].

7Parallel recursion using shared memory requires stack frames to be allocated dynamically according to a tree-structure,
which is a signiVcant overhead compared to conventional compile-time stack allocation. This is how the multithreaded
programming languages Cilk [BJK+95] and Go [Goo13] are implemented. It also introduces the possibility of non-
determinism since the behaviour of a program that exceeds the stack capacity will be dependent on the ordering of the
stack frames. One way to avoid this problem is to distribute recursion over memories so each processor has at most
one recursive process [Wel92].

8A company founded by a group of ex-INMOS employees around 2005.

32

3.3. Survey of programming and compilation approaches

The problem with data-Wow languages in general is that they only support one parallel algorithmic
paradigm, making them appropriate for only a narrow range of problems.

Languages supporting composability

It has been observed that there is a general lack of support for composability and abstraction in
parallel programming [FKT90, Fos96]. Strand [FT90], Program Composition Notation (PCN) [CT89]
and Fortran M [Fos95] have been developed to address this issue speciVcally (occam and its variants
do also support composition and abstraction but have already been mentioned).
Strand has roots in parallel logic programming and consequently a declarative style with single

assignment variables. These variables are globally accessible and are used as a means of communi-
cation and synchronisation between processes. This approach is taken to prevent race conditions
from concurrent writes to the same variable, thereby enforcing process disjointness and determinism.
It also supports distributed execution directly with language notations to specify the mapping of
processes to processors, but this depends on the structure of the computation being known to the
programmer.

PCN extends the basic ideas of Strand with a richer syntax including imperative elements and the
ability to construct reusable modules, but does not make any substantial improvements [Fos93, Fos96].
Fortran M is an extension to Fortran that draws on the experience of Strand and PCN to support

compositional (Modular) programming. It introduces processes, message passing, parallel com-
position, parallel ‘loops’ and an operator to deal with non-determinism in one-to-many channel
connections. These additions are very similar to the core features of occam, although it permits their
Wexible use with recursion, dynamic process creation and dynamic channel connections. Fortran
M also introduces notation to specify the mapping of processes on to processors, which can be
performed explicitly or recursively by specifying ranges of processors.
These three languages are interesting because of their approaches to composability but because

they are designed primarily for this aspect, they neglect the issues of general parallelism and execution
eXciency. Although Fortran M in principle maintains the advantages of occam, its dynamism makes
an eXcient distributed implementation diXcult.

Object-orientated languages

A diUerent form of communicating process languages are those based on an object-orientated approach
where an object deVnes a entity that encapsulates some state and provides methods that can be
executed externally to act on it or to perform work. Object orientation provides a natural way to
structure a program and build abstractions. It also corresponds well to parallel execution since
objects can be mapped to particular processors and communication between objects is achieved with
method calls, providing a way to execute a subroutine in a diUerent address space. This mechanism
is attractive because it can be implemented simply with a sequence of message exchanges, because it
provides clean procedure-call semantics and because it provides the ability to move easily between
the local and remote forms of a call. In general, method calls to remote objects are referred to as
remote procedure calls (RPCs) [BN84] and can be viewed as a simple abstraction of message passing.
Implementation of an object-orientated language on a distributed memory architecture raises the

question of how object references are maintained. The following languages all employ a global name
space in which object references are visible. When the location of objects can be determined at compile
time the references can be resolved at the same time, otherwise they must be distributed in some way
at run time. It is crucial for performance that resolution of object locations can be performed in a
scalable way. One way is to support global name spaces in hardware, the MIT J-Machine for example,
did this to support the implementation of parallel object-orientated languages [DFK+92].
Concurrent Aggregates (CA) [CD90] introduces parallelism implicitly from concurrent method

executions. It supports hierarchical program structuring and provides a mechanism for data abstrac-

33

Chapter 3. Parallel programming, languages and compilation

tion, called aggregates. An aggregate is a structured collection of objects, referenced by a single
name, that can be distributed between processors and accessed concurrently. In addition, members
of an aggregate can access any other member and call methods on it. New objects can be created
dynamically and are accessed in a global shared address space. The idea of distributed collections of
objects was integrated with C++ in the programming language pC++ [BBG+93].
Charm [KRSG94, RSSK94] is similar to CA, based on the dynamic creation of objects in a global,

and potentially distributed, object space. The location of objects is maintained dynamically by the run-
time system, providing global references. Remote method execution is asynchronous and completes
in two phases so that latency hiding can be performed. Objects can be created individually or in
arrays (like an aggregate) and the placement of objects can be speciVed or determined automatically
by the run-time system, which is also able to perform load balancing. To support regular data-parallel
computations, Charm provides a special type of object array that is distributed over the whole system,
with one element per processor. This can be used as a simple mechanism for data abstraction.

Compositional C++ (CC++) [CK93] is an extension to C++ that diUers to CA and Charm in
that it introduces constructs to control parallelism with parallel composition, parallel ‘loops’ and
asynchronous parallelism. Operators for synchronisation and atomic access are provided to facilitate
interaction. Objects can be mapped onto speciVc processors and accessed via a ‘global pointer’ to
execute methods remotely.
These three languages interpret the concept of object orientation in quite diUerent ways and do

not provide much support for general forms of parallelism. Moreover, their global name spaces and
additional dynamism makes an eXcient distributed implementation diXcult.

Tuple spaces

A tuple space is a globally accessible store, in which tuples containing one or more values can be added
removed and updated. Access to a tuple space is associative, depending on a key or pattern. The
idea was introduced with the language Linda [Gel85], which provided just four operations: read and
remove a tuple, read a tuple, write a tuple, and create a new process. Tuples are accessed according to
matching rules that are based on the number of elements they contain and communication between
processes corresponds to a write with a matching read.
Linda was designed as a coordination language to be used in combination with any sequential

programming language, as a means of expressing the structure and evolution of the parallel compo-
nents of the computation [GC92], with tuple spaces providing a simple way to express concurrently
accessible data structures [CGL86].
A single global tuple space poses problems for composability since it is diXcult to develop

components that encapsulate communications. The naming and matching of tuples also makes
it diXcult to express structured representations of data and communication structures between
collections of processes. The implementation of tuple spaces is diXcult due to the complexity
that arises from matching tuples. A number of proposals for distributed memory machines have
been made, such as [Gel85, CJ87, Zen90, DWR95] but they depend on compile-time optimisations
based on analysis of tuple types and accesses and hashing schemes with centralised components or
broadcasting. The former can lead to unpredictable performance and the latter to poor scalability.
Ease [Zen92b, Zen92a] is a reVnement of Linda’s tuple space concept to produce a language that

is intended to be simpler to implement. It is based on shared data structures called contexts, which
can be declared and accessed (concurrently) according to block scoping rules. Its implementation
is simpliVed since access to a context is dictated by whether it is ordered or unordered.9 A special
call-reply context provides an RPC-style mechanism that can be used to implement servers to provide
access to resources. Although Ease allows hierarchical compositions of parallel components with

9An implementation of Ease integrated with C has been proposed [MD94] but the access to a context is directed through
a single process that has been designated to own it. This makes it easy to implement ordered access, but competition
for access to a large data structure will signiVcantly reduce performance.

34

3.3. Survey of programming and compilation approaches

contexts, it is not made clear in the work how contexts can be used to express more complex data
structures.

3.3.3. Functional programming

Functional or applicative programming languages are based on the application of functions as a
means of computation. A function takes a set of parameters and can return a result but it cannot
cause any side eUects, changing any state of the computation. A computation therefore evolves as a
tree-structured collection of processes and transfers of data occur only between parents and children.

The absence of side eUects makes functional languages an excellent candidate for parallel execution
since independent parts of the tree can be evaluated in parallel. Their execution with a von Neumann
architecture is inherently ineXcient as all memory accesses are channelled through a single point (the
von Neumann bottleneck), despite a high level of independence between them [Bac78]. Functional
languages can therefore be viewed as being implicitly parallel, hiding all resource allocation issues
from the programmer [PJ89]. This creates a broad scope for compilation, in particular for the run-time
components since nearly all of the management of resources must be dealt with dynamically.
A weakness of a functional approach is that transfers of data in control of the programmer

occur only between callers and callees (parent and child nodes of the execution tree). This restricts
the exploitation of locality in parallel computations, particularly computations that are naturally
expressed as a process or systolic array, where each process iteratively computes on local data. To
achieve a similar eUect with a functional description, the state of the array must be passed up and
down the execution tree as it expands between iterations.

Compilation of functional languages

The Zero-Assignment Parallel Processor (ZAPP) [BS81] architecture is a message-passing run-time
system designed as a compilation target for the execution of functional programs. It is based on a
simple distributed scheme where a single processor starts executing at the ‘root’ of the tree and other
processors steal tree nodes from adjacent processors and reducing nodes that are not dependent on
any children. Expansion of the process tree is conducted breadth-Vrst when adjacent processes are
underloaded and depth-Vrst when they are loaded. When no work can be diUused into the network,
expansion and reduction proceeds sequentially.

An implementation of ZAPP on an array of transputers demonstrated that the scheme can deliver
near-optimal machine utilisation for algorithms expressed in a ‘divide-and-conquer’ form [MS87,
MS88]. This depends crucially on a network topology that is both vertex-symmetric, where each
processor has an identical view of the network, and well connected, thereby supporting the eXcient
diUusion of work at an exponential rate, bringing processors into action rapidly.
Similar schemes to ZAPP have also been described, e.g. [HG85], and are generally referred to as

parallel graph reduction [PvE93] but in general it is diXcult to deliver good performance for a broad
class of functional programs.
Another way to implement functional languages is to convert them into a data-Wow form. This

is the approach for compiling the functional language SISAL (streams and iteration in a single
assignment language) [MSA+83], which creates an intermediate form consisting of an acyclic data-
Wow graph where nodes denote operations and edges denote transfers of data [FCO90].

Functional paradigms for parallelism

A key observation made in the ZAPP work was that many problems can be expressed in a divide-and-
conquer form (written in terms of mapping and combining functions), where they are recursively
decomposed into a set of sub-problems and these are then successively combined into a solution.
Additional ‘functional forms’ have been identiVed [Col89, DFH+93, THLPJ98], in the same sense as
the paradigms described in §3.1.3 [p. 21], with common structures underlying diUerent programs.

35

Chapter 3. Parallel programming, languages and compilation

These forms also include a pipeline, task farm, a data-parallel ‘map’ and a function to perform
all-to-all interactions.

By restricting the structure in functional programs to a small set of paradigms, the implementation
of each one can be addressed explicitly so that resource management can be dealt with in an eXcient
way. This is potentially useful for a programmer since the paradigms can be used as ‘building blocks’
that can be combined in various ways to create complex program structures. The paradigms are also
amenable to transformations can be used to simplify or convert between paradigms and may even
be combined with side-eUect free imperative code to deVne the behaviour of some functions. The
programming language Structured Composition Notation (SCN) [DGTY95] developed as a means of
doing this.
Most notably perhaps is Google’s MapReduce framework [DG08], which is essentially based on

the divide-and-conquer paradigm. A programmer simply speciVes the behaviour of the ‘map’ and
‘reduce’ functions; an implementation of the framework deals with all other aspects of execution and
resource management.
A diUerent approach to functional execution of parallel programs is to restrict the form of par-

allelism. The Nested Data-parallel Language (NESL) [Ble95] is a functional programming language
that introduces parallelism with data-parallel operations on sequences, which are its only primitive
data type. It allows arbitrary nesting of functions and composition in sequence and parallel. The
implementation of NESL is simple and based on a number of program transformations to ‘Watten’
nested parallelism and sequences [BSC+93].

3.3.4. Communication libraries

Communication libraries are used with sequential languages such as C and Fortran to provide
functions for communicating with messages. Despite their status as libraries, they impose a particular
programming model in which a number of identical instances of the program are executed in parallel
and communicate with one another, based on a unique identiVer or rank. This model is known as a
single-program multiple-data (SPMD) model and is due to the simplicity of compilation and execution,
where a single binary is produced and replicated over a machine for execution.

The simplicity of communication libraries and a SPMD model makes programs written in this
way simple to understand and compile. This provides eXcient and predictable execution as well
as portability between systems. However, this approach provides little or no abstraction from the
underlying machine in terms of resource management, which is left to the programmer. In particular,
there is only a single level of parallelism between programs and distributed data structures must be
managed explicitly by allocating fragments to each of the program instances.
The Message Passing Interface (MPI) [WD96] deVnes a standard message-passing library interface

with speciVc implementations for diUerent machines, to provide a degree of portability for programs
that use it. It is based on synchronised (or two-sided) message exchanges but also deVnes high-level
collective operations such as broadcasts, reductions and all-to-all transfers of data, and features
for the construction of modular components such as libraries with named groups of processes and
scoping of operations within them [SDB93]. Despite its low-level SPMD approach, the resulting
performance predictability and portability, and support for general parallelism from message passing
that it provides, have resulted in MPI becoming the standard for programming in HPC.
MPI 2 [Mes09] introduced dynamic process creation but it does not address how resources are

managed, leaving this to an implementation. In particular, a server construct to “address the need to
support groups of reactive processes that accept connections from other groups” [Mes09, §10.4], or in
other words, a mechanism for sharing. The problems with this are that the location of servers is not
known at compile time and because MPI is a library they cannot be named. To quote the speciVcation
directly: “Almost all of the complexity in MPI client/server routines addresses the question “how does
the client Vnd out how to contact the server?”.” This is due to the fact that MPI makes no assumptions
about the mapping or scheduling of processes onto processors. The solution is a centralised scheme

36

3.3. Survey of programming and compilation approaches

where servers publish their address to a nameserver third party, which clients then query to establish
a connection with a particular server, but this will not scale well with large numbers of clients and
servers.

One of the main reasons dynamic process creation was added to the MPI speciVcation was to match
the capabilities of the contemporary Parallel Virtual Machine (PVM) [BDG+91] library and run-time
environment [GL95], which employs a message-passing model of communication and permits the
dynamic creation of processes. PVM is based on the concept of managing a collection of computing
resources with a single ‘virtual’ machine, and was originally intended for programming networks of
workstations.

Lastly, the shared memory (SHMEM) [BK94], Global Address Space Networking (GASNet) [Bon02]
communication interfaces to support shared-memory programming with, what are referred to as,
one-sided communication that implement global read and write operations. These operations were
also introduced in the MPI 2 speciVcation. In general, libraries supporting one-sided communication
are used as compilation targets for the translation of high-level data-parallel languages for HPC
systems (which are surveyed in the next section) and are compiled according to a SPMD model.

3.3.5. Data-parallel programming

Data-parallel programming languages are ones in which operations are applied globally to arrays
distributed over a collection of processors. These might include standard arithmetic operations such
as addition or multiplication, or more general functions such as maps, sums, reductions and preVxes.
Typically, the decomposition and placement of data is speciVed with a high-level syntax to hide the
details of how data and computations are partitioned across processors, and to hide the management
of global and local memory accesses, in order to provide the programmer with simple sequential
semantics.
Essentially, a data-parallel approach can be viewed as a high-level notation for a shared-memory

programming model and programs expressed in this way are compiled to a form in which processes
synchronise in groups and perform remote memory accesses.

Data-parallel Fortran variants

A family of data-parallel programming languages are based on versions of sequential Fortran,
enhancing them with syntax for data decompositions and data-parallel operations. These include
Connection machine Fortran [BHMS91], Fortran D [FHK+90], Vienna Fortran [CMZ92] and High
Performance Fortran (HPF) [KLS93]. These diUer primarily by the way in which data decompositions
and distributions are speciVed, but are all based on compilation schemes, which translate the program
into a SPMD form. This restricts the available parallelism to a single level as operations cannot be
composed in parallel or nested.
Since the data structures in these languages are distributed at compile time over the parallel

program instances, the access patterns can be determined at this point. However, even for simple
programs, access patterns can become complex and the process of determining them involves
non-trivial analysis of the distribution of data and its dependencies between loop iterations and
processes. The generation of eXcient SPMD code depends on a number of optimisations based on the
analysis of the resulting communication patterns; for example, by aggregating messages, overlapping
communication with computation, reordering sequential operations and introducing additional
parallelism [HKwT92b, HKwT92a, HBB+95]. The result is a complex sequence of communications
nested in conditional control Wow, bearing little relation to the original program and creates a large
potential for ineXciency; the execution time of a data-parallel Fortran program compiled with
diUerent compilers can vary signiVcantly and hence programs become ‘tuned’ to particular compilers
to obtain good performance.

37

Chapter 3. Parallel programming, languages and compilation

Partitioned global address space languages

Another family of data-parallel programming approaches are referred to as Partitioned Global Address
Space (PGAS). They aim to address the poor eXciency of high-level data-parallel languages by
logically partitioning a shared address space into disjoint regions that each process can access locally,
thereby providing the opportunity for the programmer to exploit locality. Since PGAS languages
essentially permit the programmer some level of control over local and remote accesses, they also
introduce the possibility of race conditions and deadlock. They therefore include mechanisms for
synchronisation to maintain consistency.
The Global Arrays (GAs) library [NHL94] and languages Coarray Fortran (CAF) [NR98], UniVed

Parallel C (UPC) [CDC+99], Titanium [YSP+98] and Z-level Programming Language (ZPL) [CLC+98]
were amongst a Vrst generation of PGAS languages. In addition to the logical partitioning of arrays,
these provided functionality associated with the speciVcation and distribution of arrays and operations
on them, similar to that of existing data-parallel languages. A serious drawback of these approaches
however is that they do not permit the composition of data-parallel operations or expression of any
other forms of parallelism. This restricts their ability both to support abstraction and a wide class of
parallel programs. This problem has persisted from previous data-parallel languages and stems from
their basis on a SPMD programming and compilation model.

Chapel [CCZ07] and X10 [ESS04] build on the approach of the Vrst generation of PGAS languages.
As well as providing partitioned data distributions, they support more general forms of parallelism
as well as their arbitrary nesting and parallel and sequential composition.10 However, since their
approach remains Vrmly within a shared-memory model, they do not directly support the expression
of communication with message passing. Pairwise interactions are produced with synchronised
access to variables, which was explained in §2.1.1 [p. 12].

The main feature of Chapel is the integration of a range of data types, distributions and operations
into the language syntax; less emphasis is placed on these features in X10 although it provides
similar abilities. The basic operations in Chapel are similar to those in HPF and ZPL, but they also
include associative and unstructured arrays (a type of index set referred to as a domain). They are
implemented using the task-parallel features of the language [CCDN11, CCD+11] to provide some
level of performance transparency and the opportunity to optimise or modify them. However, the
compiler remains responsible for generating the global reads and writes to satisfy any dependencies.
Chapel programs are compiled by transforming them into a SPMD form and data-parallel operations
are compiled to operate over Vxed collections of processors. In this sense their resources are statically
allocated, in contrast to the creation of parallel tasks, which is managed dynamically by the run-time
system with queues of work per processor.

Fortress [ACH+05] provides similar features to Chapel and X10 with shared-memory data and task
parallelism, but with a high-level mathematical syntax geared towards scientiVc programs.

3.4. Summary

This chapter has discussed parallel programming. At its heart are two key principles, the decomposi-
tion of a problem into a collection of parallel tasks and the notion of speedup and parallel eXciency to
quantify performance. A small set of parallel paradigms characterise simple concepts that underpin
the structure of many parallel algorithms. Their simplicity is essential when dealing with large
amounts of parallelism and they can be viewed as building blocks that can be combined to implement
parallel algorithms and programs.
To deVne what constitutes a good parallel programming language and to provide a basis for the

survey of existing languages, a set of criteria were proposed:

10 These languages are included in this section as ‘data-parallel’ because although in principle they can be used to express
task-parallel programs, in a recursive way for example, this is not their intended usage and will likely not deliver
scalable performance.

38

3.4. Summary

1. support for programming abstraction to allow a program to be constructed as a composition of
parts;

2. support for data abstraction to separate representations of data from the computational parts
that operate on them;

3. support for general parallelism to make the expression and composition of the paradigms
convenient;

4. high execution eXciency.

A balance must be struck between the expressive power of a language in fulVlling the Vrst three
criteria with the last, the execution eXciency.

The survey highlighted three main programming paradigms: message passing, shared memory and
functional. In general, approaches based on shared memory correspond closely to data parallelism.
These can summarised as follows:

paradigm communication parallelism forms of parallelism

message passing explicit explicit general
shared memory implicit explicit limited
. data parallel implicit implicit single

functional implicit implicit limited

The following summarise the main observations from the survey.

• Message passing. There are relatively few message-passing approaches and, despite a large
number of data-parallel languages, MPI has been an enduring standard. Occam and its close
descendants are the only languages addressing the need for distributed execution in embedded
and general-purpose systems.
The reason for the success of message-passing approaches is that they can be compiled

simply giving them a transparent execution model. Simple compilation enables eXcient
and predictable programs to be expressed, as well as providing portability between diUerent
compilers and architectures. It is for these same reasons that the use of C is so widespread.

The main criticisms of message passing is that the programmer is left to deal explicitly with
communication and parallelism at the expense of the clarity of their program. This makes it
diXcult to build abstractions such as subroutines, modules and libraries, and, in particular,
representations of data are fragmented between processes so it is diXcult to express shared
data structures.

• Data-parallel. Data-parallel languages are based on a shared-memory abstraction of communi-
cation in which data-parallel operations are performed on large (and potentially distributed)
data structures. Thus, they are amenable only to data-parallel problems.
Early data-parallel languages were closely tied to the SPMD compilation model. This

restricted programs to expressing a single level of parallelism with no composition or nesting
of operations. The allocation of data between parallel instances of the program allows access
patterns to be determined at compile time, but they tend to be complex, even for simple
operations. This led to complex and specialised compilers with the performance of programs
being dependent on a particular compiler, rather than the program itself.

PGAS languages attempt to place some control of locality with the programmer by associat-
ing portions of shared data structures with the local memory of processes. The Chapel language,
an exemplar PGAS language, tries to address the problems with compilation by deVning its
high-level approach in terms of primitive parallel constructs. However, the resolution of global
accesses and generation of distributed reads and writes is a complex problem and leads to
ineXcient execution.
Almost all of the data-parallel/shared-memory/PGAS approaches deal with resource alloca-

tion at compile time because performance depends so much on this.

39

Chapter 3. Parallel programming, languages and compilation

• Functional. Functional languages appear to be ideal for dealing with parallelism because it
is implicit in the evaluation of non-dependent functions, due to the absence of side-eUects.
Communication is also implicit in the transfer of arguments and results between parent
and child functions. This allows the programmer to focus on the high-level behaviour and
composition of a program.

The problem with a functional approach is that the correspondence to a machine architecture
is weak and therefore the scope for an implementation is broad, requiring a great deal of run-
time resource management. Although limited forms of functional parallelism can deliver good
speedups, obtaining good speedups for general classes of functional programs is diXcult, and
especially so with distributed implementations. Functional languages also have some inherent
limitations in dealing with external interaction and responding to unpredictable events.

In conclusion, existing message-passing approaches are best placed to express general forms of
parallelism whilst maintaining eXcient execution, but they oUer little to the programmer for building
abstractions. In contrast, data-parallel languages are designed to deal with data abstractions, but
because this is based on hiding communication, communication patterns must be inferred (with
diXculty) during compilation and they therefore do not provide a good machine abstraction.

It seems clear that these capabilities should be combined—shared memory withmessage passing—to
produce a programming language that would be both expressive and eXcient, fulVlling the proposed
language criteria. This is the approach of the sire programming language described in Chapter 6.

40

CHAPTER 4.

GENERAL-PURPOSE PARALLEL ARCHITECTURE

program

language

compilation

model

machine

This chapter describes how a parallel machine architecture can support a communicating-process
model of computation in a way that provides an abstraction from speciVc implementations and for
programs to be expressed in an architecture-independent way.

The chapter is divided into three main parts that correspond to diUerent aspects of the architecture.
First, the theoretical basis for a universal communication network with the choice topology and
routing strategy; second, the practical details of an implementation of such a network with the
mechanics of transmitting data around the network; and third, a discussion of the characteristics of
the processors that the network connects and their aUect on the nature of the machine. To contrast
against this approach, a short survey of real machines is included at the end.

4.1. Universal communication networks

An interconnection network for a parallel computer is the hardware by which a collection of processors
are able to communicate with each other. This might be to send messages in a distributed-memory
system or to support memory accesses in a shared-memory system.
Ideally, an interconnection network connects every processor directly to every other processor

to support eXcient communication, as is illustrated in Figure 4.1. In practice however, this is not
practical since the number of connections grows with the square of the size of the network and
the number of connections to each node grows linearly. Even for small networks, the complexity
involved in organising and connecting links in an implementation prohibits this approach and as
such, it is inherently non-scalable.
A more practical approach is to use sparsely-connected networks where each network node is

connected only to a small number of other nodes. When the number of connections per node is either
Vxed or grows slowly with the network size, this in principle allows it to connect an arbitrary number
of nodes, limited only by the physical constraints of an implementation. Messages are sent between
nodes in a sparse network by traversing a path from the source to the destination, potentially via
intermediate nodes.
This section explains the surprising result due to Valiant that there exists a class of sparse

universal networks that, in combination with a distributed routing strategy, can simulate any other
communication network eXciently [VB81, Val90b]. This makes them suitable to support arbitrary
communication patterns between a collection of processors. The remainder of the section Vrst
introduces some key concepts, before discussing the family of network topologies and the routing
scheme.

4.1.1. Network model

A network is a collection of nodes that are connected by links. The purpose of a network in the
context of this thesis is to perform a computation. Nodes can create and consume messages as well
as forwarding them on to other nodes. Links are point-to-point connections between nodes that
transport messages in one direction and a buUer is associated with each link to queue outstanding
messages to be transmitted.
The structure of an interconnection network can be represented by a graph G = (V,E) whose

vertices V represent nodes and edges E that represent communication links. Each (undirected) edge

41

Chapter 4. General-purpose parallel architecture

Figure 4.1.: A complete network. This is the ideal topology for an interconnect since every node can com-
municate directly with every other node, without interference from any other communications.
However, an N -node complete network requires N − 1 connections per node making it diXcult
to implement for all but the smallest networks.

(a) (b)

Figure 4.2.: Illustrations of the network model. (a) shows a network consisting of three terminal nodes con-
nected with (bidirectional) links; and (b) shows a network with two terminal nodes connected by a
non-terminal node, so that messages between the two terminals always traverse the intermediate
non-terminal node.

represents two links, one in each direction. Each terminal node contains a switch that connects
the incident links and a processor that can source and sink messages to and from the switch. A
non-terminal node only contains a switch and a network that contains non-terminal nodes are called
indirect. In a direct network, all nodes are terminal. The switch can establish connections between all
of its inputs and outputs, and it supports simultaneous transmissions, but links can only transmit one
message at a time. The transmission of a message along a link is taken to be one time unit. Figure 4.2
illustrates the main components of the network model.

Basic features

The following are deVnitions of some basic features of a network G:

• the size of G is given by the number of vertices, which is denoted by N and is generally an
integral power of two, N = 2n;

• a path p(u, v) between two nodes u and v in G is an ordered sequence of adjacent edges that
join them;

• the distance d(u, v) is the length of the path between two nodes u and v in G, and a path is
minimal if the distance is a minimum of all possible paths;

• the degree of G is the maximum number of edges incident upon a node;

• the capacity of G is the total number of edges.

4.1.2. Properties

Based on the above network model, the following two properties provide a strong characterisation of
communication performance.

42

4.1. Universal communication networks

DeVnition 4.1 (Diameter). The diameterD ofG is the longest shortest path between any two nodes:

D(G) = max
u,v∈V

d(u, v).

The diameter gives a lower bound on the worst-case time required to deliver a message and hence
should be small. The following theorem provides a lower bound

Theorem 1. For any Vxed d, the diameter of any N -node network of degree-d is at least Ω(logN).

Proof. Any node can in k steps reach at most (d− 1)k other nodes. To be able to reach every other
node it must travel at least the diameter of the network, so when (d− 1)k ≥ N , the diameter is at
least logd−1N .

DeVnition 4.2 (Bisection width). The bisection width B of G is the minimum number of vertices
that connect any two equally-sized partitions (±1 for odd sizes) of V . For every U ∈ V , let Ū = U \V
and C(U, Ū) be the number of edges that have one end point in U and one end point in Ū , then

B(G) = min
U⊂V,|U |=b|V |/2c

C(U, Ū).

The bisection width is a measure of how connected a network is. In a network with a large
bisection width, communication can be performed eXciently across any partition of the network
into two equally sized components. A network with a small bisection width will have a ‘bottleneck’
where many paths of communication share only a small set of edges.1 Both of these metrics also
provide a measure of the implementation complexity in terms of routing links between components.
The additional properties of symmetry and hierarchical recursivity relate to the structure of the

network and aUect both the implementation and capability of network. The symmetry of a graph
can apply to both vertices and edges. A vertex-symmetric graph looks the same from any vertex, i.e.
no vertex can be distinguished for any other based on the surrounding vertices. A similar deVnition
is given for edge-symmetric graphs. Symmetry is important for parallel programming as it implies
uniformity. The execution and evolution of a program is therefore independent of its location. If a
graph is hierarchically recursive then it contains smaller sub-graphs of the same structure. This can
be beneVcial for an implementation based on a hierarchical integration using diUerent technologies
and for executing parallel programs with a recursive structure.

4.1.3. Simulations

An important ability of a network in the context of parallel communication is to be able to simulate
other networks. LetH be the host network with p nodes and G be the guest network with v nodes. A
simulation is then an embedding of G into H , which consists of a pair of mappings: one from each
node of G to a node in H and the other from each edge in G to a path in H . The simulation of a
communication pattern takes a number of time steps which is dependent on the distances messages
have to travel and contention for edges due to intersecting paths in the embedding. If G is known in
advance then a static embedding can be devised to obtain the best-possible mappings. A simulation
performed using a static embedding is said to be oU-line. If G is not known in advance, since the G
may be generated or change dynamically, then a dynamic embedding is required where a mapping of
the edges is performed on-line during the simulation.

DeVnition 4.3 (Simulation eXciency). The eXciency by whichH can simulate G is judged by the
slowdown in the simulation compared to an direct implementation of G. If H can simulate tG steps

1A more general form of bisection width is expansion which measures how well-connected subcomponents of a graph are
to the rest of the graph in which they are contained. Graphs with high expansion are known as expanders [HLW06].

43

Chapter 4. General-purpose parallel architecture

of G in time tH , then the eXciency E is deVned as

E =
tHNH

tGNG
. (4.1.1)

This is based on the node-time product of the network to normalise the slowdown when NH 6= NG.

A simulation is said to be optimal when E is a constant that does not depend on pG or pH .2

There are four measures that bound the eXciency with which a host can simulate some guest [Lei92]:

• the dilation is the maximum path length in H of any edge in G;

• the congestion is the maximum number of edges in G that are mapped to any edge in H ;

• the load is the maximum number of nodes in G mapped to any node in H ;

• the expansion is the ratio between the number of vertices in H to the number of edges in G.

When all of these measures are small, it corresponds to an eXcient simulation, and if all of them are
constant, then the host can simulate the guest optimally.
The notion of a simulation gives rise to a class of universal networks that can simulate any other

network. This can be deVned in the following way.

DeVnition 4.4 (Universal network). A universal network is a bounded-degree network that can
simulate any other bounded-degree network of the same size with eXciency O(logN).

Although this eXciency is not optimal, it is the least possible since the diameter of any practical
bounded-degree network has a diameter of at least Ω(logN), due to Theorem 1. Furthermore,
Leiserson has observed that non-universal networks exhibit a polynomial slowdown when simulating
other networks and therefore have no theoretical advantage over a sequential machine, which can
simulate any parallel machine also in polynomial time, since t steps of an N -node network can be
simulated in tN steps sequentially [Lei85].
In the next section, a family of hypercubic networks are introduced that are universal for oU-line

simulations. §4.1.5 [p. 49] after that explains how, with the addition of a dynamic routing scheme,
hypercubic networks can be universal for on-line simulations as well.

4.1.4. Example networks

Before introducing the hypercube family of universal networks, the next section introduces some
other simple sparse networks and discusses their properties. These simple networks relate to structure
of many parallel algorithms; some have already appeared in the description of process and data-Wow
structure paradigms in §3.1.3 [p. 21].

Common bounded-degree networks

Arrays generally refer tomesh and toroidal networks. In a d-dimensional torus, if each node is labelled
with a d-component coordinate, it is connected to 2d other nodes where each adjacent node diUers in
one coordinate component by one unit; Figure 4.3d shows two examples. In a d-dimensional mesh,
nodes located at the ‘edge’ of a dimension with a coordinate component that is 0 or d

√
N − 1 do

not connect to the adjacent node at the other end of the dimension (these are referred to as ‘wrap
around’ links); Figure 4.3c shows two examples. Two special instances of arrays are 1-dimensional
mesh, called a line (Figure 4.3a) and a 1-dimensional torus, called a cycle (Figure 4.3b).3 In general, the

2 It is interesting to note that this is similar to the deVnition of parallel eXciency given in DeVnition 3.2, with S(n),
specialised single processor machine that directly implements the algorithm, relating to a direct implementation of G.

3A generalisation in the deVnition for toroidal and mesh networks speciVes the size of each dimension as k. They are
thus referred to as k-ary d-cubes and k-ary d-meshes respectively [DT03].

44

4.1. Universal communication networks

(a) 1D mesh (line) (b) 1D torus (cycle)

(c) 2D mesh
(d) 2D torus

(e) Binary tree

Figure 4.3.: Examples of common bounded-degree networks.

diameter of any d-dimensional array is Θ(d
√
N), the bisection size is Θ(N/ d

√
N) and the capacity is

Θ(N).
Trees are structures where each node connects to a single parent node and one or more child nodes,

except at the root which has no parent. In a k-ary tree, where each node has k children, with d levels
contains kd − 1 nodes. The number of nodes in a tree grows exponentially with respect to the depth
and the diameter is logkN , but the root creates a ‘bottleneck’. For a binary tree when k = 2 (see
Figure 4.3e), one half of the nodes can only communicate with the other half through this point. A
binary tree can therefore be bisected by removing just a single link from the root node. This makes it
particularly unsuitable as a communications network.

Hypercubic networks

Hypercubes have been popular in parallel computing due to their rich communication properties and
simple homogeneous structure that is both symmetric and recursive. A d-dimensional hypercube
consists of 2d nodes and, if each node is labelled with a d-bit identiVer, then an edge exists between
any two nodes u and v if and only if their identiVers diUer by exactly one bit; hence each node is
connected to d other nodes.4 Conceptually, a 4-dimensional hypercube can be constructed by joining
two cubes (3-dimensional hypercubes), each with 8 nodes, by adding 8 edges between corresponding
vertices of each cube. This is construction is illustrated in Figure 4.4.

The drawback of hypercube networks is that their degree is logarithmically related to the network
size. To scale the number of nodes, the node degree increases and consequently the complexity of the
switch in an implementation. Furthermore, switches designed for an N -node hypercube cannot be
used in a 2N -node hypercube. Additionally, the wiring density increases rapidly with network size;
for any bisection of the network, N/2 links between every pair of nodes pass through it, resulting in
a complex pattern of connections.
There is a family of networks that are related to the hypercube that have constant degree nodes.

The cost of this is a logarithmic factor increase in the number of nodes and diameter. Below, the
common hypercube variants are surveyed because they are closely related to one another and they

4They are also known as binary N -cubes, an instance of a torus network in which the size of each dimension is two.

45

Chapter 4. General-purpose parallel architecture

0 1

(a)
00 10

01 11

(b)

000 100

010 110

001 101

011 111

(c)

0000 1000

0100 1100

0010 1010

0110 1110

0001 1001

0101 1101

0011 1011

0111 1111

(d)

Figure 4.4.: Hypercubes networks in 1, 2, 3 and 4 dimensions. A d+ 1-dimensional hypercube is constructed
by creating two dimension d hypercubes and connecting corresponding nodes between them.

0 1

(a) 00 01 10 11

(b) 000 001 010 011 100 101 110 111

(c)

Figure 4.5.: ButterWy networks in 1, 2 and 3 dimensions. These correspond to the same dimension hypercubes
in Figure 4.4, with the columns to each node of the hypercube and the crossing links between
columns to the edges of the hypercube.

1

2

r

...

1

2

m

...

1

2

r

...

6
n

6
n

6
n

6
n

6
n

6
n

(a)

1 2 r· · ·

1 2 m· · ·

6n 6n 6n

(b)

1 2 r· · ·

1 2 m· · ·

6r 6r 6r

(c)

Figure 4.6.: Clos networks. (a) is a general three-stage (n,m, r)-Clos network, with r input and output nodes
each with n inputs and outputs respectively, andm middle-stage nodes. Each input and output
is connected by one link to every middle-stage node. Middle stage nodes can be replaced with
a three-stage Clos, expanding the number of stages by two, to reduce the degree of nodes, and
middle-stages can be removed to adjust the bisection bandwidth. (b) shows a folded Clos (along
the middle-stage nodes), merging the input and output nodes and (c) shows it folded in the same
way but with terminals connected to the middle-stage nodes, which can be more convenient for
an implementation.

46

4.1. Universal communication networks

(a)
(b)

(c)
(d)

(e)
(f)

Figure 4.7.: Fat tree networks. (a), (c) and (e) are examples of binary fat tree networks. 8 terminal nodes
(leaves) are connected by 3 stages of intermediate nodes. Fat tree (a) adds 2 additional links at the
root of the tree to increase the bisection bandwidth to 2; (c) adds 4 links at the root and 4 at the
second stage to increase the bisection bandwidth to 4; (e) adds 8 links to each stage, providing
full bisection bandwidth. These can be built from Vxed-degree nodes by expanding the nodes
as illustrated in (b), (d) and (f). The stages containing split fat-tree nodes in (b) and (d), and the
complete network in (f) correspond to butterWy networks of degree 1, 2 and 3, or folded-Clos
constructions wherem = n = 2.

appear widely in the literature, but their relations are often not made apparent. The survey highlights
the individual properties of each variant, to explain how they are related and demonstrate that they
are all (computationally) equivalent, up to constant factors. Establishing this equivalence is important
since it means that theoretical results based on one variant will also apply to the others.
First, butterWies and cube-connected cycles (CCCs) [PV81] extrapolate in a simple way from the

hypercube.
A butterWy network is a multistage network that is constructed by expanding each node of an

n-dimensional hypercube into n+ 1 degree-4 nodes (called a column). A stage consists of adjacent
nodes in a row. There are two kinds of links: straight links that join nodes in a column and crossing
links between columns, which are derived from the hypercube. Links between stage i and i+ 1 are of
stage i. Figure 4.5 shows 1, 2 and 3 dimensional butterWies.5

A butterWy is indirect in the sense that N inputs and N outputs are connected by N logN nodes
and messages will travel further than in the hypercube. It is also has no path diversity in that a only a
unique shortest path exists between any pair of terminal nodes (stage-0 nodes).

CCCs replace each node of an n-dimensional hypercube with a cycle of n nodes. Each node of the
cycle is connected to a corresponding node in a diUerent dimension. A CCC is closely related to the
butterWy and is contained as a sub-graph [FU92]; a single cycle (node) of the cube corresponds to an
entire column of the butterWy.

5 A common variant of the butterWy is the wrapped butterWy, which is obtained by merging nodes in the Vrst and last
stages. The relationship between the butterWy and wrapped butterWy is similar to the line and ring networks; each
can simulate the other with at most a factor of 2 slowdown. Another variant is the multibutterWy which increases the
degree of nodes by a factor of 2 [LM89, Upf92].

47

Chapter 4. General-purpose parallel architecture

Clos [Clo53] and Beneš [Ben65] networks are indirect, multistage networks that were originally
conceived for use in telecommunications. This was due to their non-blocking properties that enables
them to support circuit switching, where multiple simultaneous connections between the inputs and
outputs are used for continuous transfers of data. These networks have separate input and output
nodes and links are unidirectional.
A Clos network has three stages: input, middle and output, and is parameterised by the triple

(m,n, r). The input stage consists of r lots of n × m nodes, the middle stage of m lots of r × r
nodes and the output stage of r lots of m × n nodes. One link connects each of the middle-stage
nodes to each of the input and output nodes. This therefore allows any input to be routed to any
output via any middle-stage node. The general structure of an (m,n, r)-Clos network is illustrated
in Figure 4.6a.
The number of switches in a particular stage can also be adjusted to increase or decrease the

number of available paths between each input and output. With just one middle-stage switch, the
network would be fully connected but only one path would exist between any pair of inputs and
outputs. Withm middle-stage switches,m paths are available. Whenm ≥ 2n− 1 the network is
strictly non-blocking. This means any permutation mapping the inputs to the outputs can be realised
by link-disjoint paths; i.e. messages sent from each input to a unique output can be routed along a
set of paths in which no two paths share the same link. Whenm ≥ n, the network is rearrangeably
non-blocking, meaning that existing paths can always be rearranged to provide a link-disjoint path.6

A Clos network can be generalised to any odd number of stages by replacing each middle-stage
node with a 3-stage Clos network with the same number of inputs and outputs. Another way to see
this is that a Clos network can be used to implement any middle-stage node. This can be done to
reduce node degree or to increase the number of input and output connections.

Beneš networks are a special case of a Clos network wherem = n = 2 and with additional stages
added to reduce all nodes to degree-4. This structure is rearrangeably non-blocking. An N -input
Beneš network can be constructed by placing two N -terminal butterWies back-to-back, merging the
terminal nodes.
The symmetry of the Clos and Beneš networks allows them to be folded around the middle-stage

nodes, merging the input and output networks and using bidirectional links [JDFJ97, Ch. 3]. This
approach has two advantages: it makes the network more convenient to package when connecting
terminals that produce both input and output, and messages can traverse shorter paths between
terminals. Figure 4.6b shows the network in Figure 4.6a folded along the middle-stage switches.
Figure 4.6c shows the same folded structure but with the terminal connections made to what were
the middle-stage switches. This is an equivalent construction that can be more convenient to build
since it follows a tree structure with terminal connections at the leaves and is related to the fat tree.
A fat-tree network is based on a binary tree structure but to remedy the ‘bottleneck’ at the root,

links closer to the root become progressively ‘fatter’ by bundling collections of links to preserve
the network bisection size, in the same way the branches of a tree are get progressively thinner
towards the leaves. The structure of a fat tree is illustrated in Figure 4.7, where the network bisection
bandwidth of the network increases between Figures 4.7a, 4.7c and 4.7e, which is indicated by thicker
links.
The original proposal for fat trees was based on nodes of increasing degree that connect links of

increasing capacity [Lei85]. This however, requires nodes of an exponentially growing degree and
therefore poses problems for an implementation of these switching elements in terms of area and
latency. A practical way to implement fat trees is by splitting each node into a number of independent
Vxed-degree nodes; for each fat tree in Figure 4.7 an equivalent construction with Vxed-degree
nodes is given (Figures 4.7b, 4.7d and 4.7f). In general, this is equivalent to a folded Clos, but other

6Although the non-blocking properties of Clos networks are well understood in telecommunications, they are not
exploited in the same way in the context of computer communication networks [Yua11], instead being used for packet
switching (see §4.2 [p. 54]).

48

4.1. Universal communication networks

generalisations of fat trees have also been proposed [OIDK95, PV97].7

At this point it is useful to summarise the relationships between the networks described thus far.

• (hypercube→ butterWy, CCC) An n-dimensional butterWy is obtained by expanding each node
of an n-dimensional hypercube, and this contains n-dimensional CCCs as a subgraph (shown
in Figure 4.4 and Figure 4.5).

• (fat tree→ butterWy) Expanding each node of a depth-n fat tree into a number of nodes, each
with two links to the previous level and two links to the next level (unless they are a root or
leaf node), yields an n-dimensional butterWy graph (shown in Figure 4.7).

• (folded Clos→ fat tree) An n-stage folded-Clos network with terminal connections made with
the middle-stage switches is equivalent to a fat tree where each node is expanded with the
same degree nodes in each level (shown in Figure 4.6c).

• In both the folded-Clos and Vxed-degree fat-tree networks, nodes of degree greater than 4 (that
of the butterWy) can be used to reduce the number of levels or increase the bisection bandwidth,
or a combination of both.

Lastly, the shuYe-exchange and de Brujin [dBE46] networks, although still related to the hypercube,
are not derived as directly.
ShuYe-exchange networks have 2n nodes with two kinds of links: exchange links that connect

nodes diUering in the least signiVcant bit of the binary representation and shuYe links that connect
nodes identiVed by a one-bit circular shift of the binary representation. They have been suggested as
appropriate for use in parallel interconnection networks in several inWuential papers [Sto71, Sch80]
and although they have constant-degree nodes, suUer from the similar wiring problems as hypercubes.
De Brujin networks closely relate to shuYe-exchange networks. An N -node de Brujin network

can be obtained by merging all of the nodes connected by exchange edges in an (N + 1)-node
shuYe-exchange network.
The following theorem establishes a universality result for hypercubic networks.

Theorem 2 (Leighton [Lei92, Ch. 3]). Any N -node bounded-degree network can be simulated oU-line
in an N -node butterWy network with a O(logN) slowdown.

The butterWy is therefore a universal network since it can simulate any other network with a
comparable amount of hardware (i.e. processors, switches and wires). The O(logN) overhead is
the least possible overhead that can be achieved with practical bounded-degree networks. This
result also applies to CCC, Beneš, Clos, shuYe-exchange and de Brujin networks since they are all
computationally equivalent up to constant factors.8

4.1.5. Routing

So far only oU-line simulations have been considered. These use static embeddings of one network
into another, where full knowledge of the network structure can be used to choose paths to minimise
dilation and congestion. This is the basis for the universality result of Theorem 2. A more diXcult
problem, and the one of a general parallel communication scheme, is eXcient on-line simulations
of arbitrary and potentially dynamic communication patterns. This requires a distributed routing
scheme that makes decisions based on local information, because in a centralised scheme, it would
be ineXcient for each node to gather information about the whole network and would require an

7The terms folded Clos and fat tree are often used interchangeably in the literature, where fat tree typically refers to the
construction with Vxed-degree nodes rather than the original proposal [Lei85].

8 For a class of normal hypercube algorithms where only one dimension of the hypercube is used for communication at a
time, these networks can simulate the algorithm directly with no loss of eXciency [Ull84, Ch. 6]. The intuition for
this is that each node of a hypercube is expanded into Θ(logN) nodes, with each node being connected in one of the
original dimensions.

49

Chapter 4. General-purpose parallel architecture

Name Degree Diameter Bisection size Capacity per terminal

Ideal
Complete N 1 (N/2)2 N − 1

Simple
1D array 2 N − 1 1 Θ(1)

2D array 4 Θ(
√
N) Θ(

√
N) Θ(1)

3D array 6 Θ(3
√
N) Θ(N/ 3

√
N) Θ(1)

Binary tree 3 logN 1 Θ(1)

Hypercubic
Hypercube logN logN N/2 Θ(logN)
Cube-connected cycles* 3 Θ(logN) Θ(N/ logN) Θ(logN)
ButterWy* 4 Θ(logN) N/2 Θ(logN)
Beneš* 4 Θ(logN) N Θ(logN)
Clos* Θ(1) Θ(logN) Θ(N) Θ(logN)
Folded Clos* Θ(1) Θ(logN) Θ(N) Θ(logN)
Fat tree* Θ(1) Θ(logN) Θ(N) Θ(logN)
ShuYe-exchange* 3 2 logN Θ(N/ logN) Θ(logN)
De Brujin* 4 logN Θ(N/ logN) Θ(logN)

Table 4.1.: Summary of diUerent sparse networks and their properties. ‘*’ denotes the properties of these
networks are expressed relative to the number of terminals they connect, N , rather than the
number of nodes, Θ(N logN).

amount of state proportional to the size of the network. A distributed scheme therefore provides
performance that scales well with network size.
A communication pattern can be characterised by a h-relation where each node has at most h

messages to send to various other nodes in the network, and each node is also due to receive at most h
messages from other nodes in the network [Val90a]. A special case of a 1-relation is a permutation or
one-to-one mapping where each node sends to a unique destination. A routing scheme for a network
G determines the paths on which messages are sent between source and destination nodes, providing
a dynamic embedding of paths for a h-relation into G.
An essential property of any routing scheme is that it should not cause deadlock. Deadlock is a

property of the combination of the network and routing scheme. It is caused by a cyclic dependency
between two or more messages that each wait for the other to release limited network resources
whilst holding some themselves. Typically, this limited resource is buUer space.

Oblivious routing

The most simple routing schemes are oblivious where messages are routed according only to the
address of the destination and possibly the source and not to any state of the network. Oblivious
schemes will typically be greedy and only route along minimal paths.

For any particular network, adversarial permutations can be designed to maximise the congestion
on particular links and hence the time taken to realise the communication. The following theorem
provides a general lower-bound for deterministic oblivious schemes, representing a worst-case.

Theorem 3 (Borodin & Hopcroft [BH85]). For anyN -node degree-d network, no deterministic oblivious
routing scheme can perform a 1-relation in less than Ω(

√
N/d) steps.

Although these schemes perform poorly in the worst case, they do in fact perform well on average
since adversarial permutations rarely occur. Consider a random routing problem called a random

50

4.1. Universal communication networks

h-mapping where each node has at most h packets to send, each packet has a destination chosen
uniformly at random and each node receives an expected h packets. Then, the following theorem
established this routing problem can be simulated eXciently on a butterWy.

Theorem 4 (Leighton [Lei92, Ch. 3]). With high probability, a random h-mapping between the logN
input nodes of an N -node butterWy can be realised in O(logN) + O(h) steps with a deterministic
oblivious routing scheme.

Therefore, the average case behaviour of deterministic oblivious routing is close to the best case,
even when the network is heavily loaded.
For all d-dimensional arrays (i.e. mesh and toroidal networks that were deVned in §4.1.4 [p. 44]),

dimension-order routing can be used. When each node is labelled with an d-component coordinate
this works by moving a packet through the Vrst dimension until the corresponding coordinate is the
same. It then proceeds in the same way for the remaining dimensions until the coordinates match and
the destination is reached. For multistage indirect networks, a simple deterministic routing scheme
operates in two phases where packets are Vrst routed ‘up’ towards the middle-stage switches and
then back ‘down’ towards the terminals.
There are a wide variety of oblivious routing algorithms for diUerent types of networks and

communication patterns, see [Lei92, §1.7] or [DT03, Ch. 9] for examples.

Adaptive routing

In contrast to oblivious schemes, adaptive schemes choose the available paths between a source and
destination based on some criteria. This serves to balance communications more evenly over the
network to reduce congestion. Adaptive schemes could take into account the state of the network,
such as the buUer occupancy in neighbouring nodes, and are consequently more complex than
oblivious ones.
Furthermore, adaptive schemes can create additional communication due to the exchange of

information with other nodes, they can potentially choose longer routes for messages and can cause
livelock. This is when messages are able traverse non-minimal paths and make no progress towards
the destination. Adaptive schemes are therefore beyond rigorous theoretical analysis [Val82] and
cannot practically be used to deliver bounded latency.
For examples of adaptive routing schemes see [Sch98, Ch. 8] and for further details see [DT03,

Ch. 10].

Two-phase randomised routing

The bounds in Theorems 3 and 4 show that although oblivious routing schemes perform poorly in
the worst case, they do on average perform well. Based on this in the 1980s, Valiant observed that
eXcient distributed routing could be achieved by reducing any routing problem into a sequence
of two random routing problems. This technique has come to be known as two-phase randomised
routing and has been widely studied [VB81, Val82, Upf84, Val90b].9

Two-phase randomised routing works by routing all messages to a randomly chosen intermediate
node, before routing them towards their destination. An oblivious routing scheme used in either
phase. The eUect is that each phase corresponds to random 1-mappings and all communication
patterns are reduced to a collective worst case. On average, messages travel twice the average path
length, but load is evenly distributed across the network, making delivery time uniformly low and
therefore bounded. Since the scheme involves randomisation the bound is not guaranteed but it holds
with overwhelming probability; very occasionally messages will be held up but overall performance
will not be noticeably aUected. It also generalises to arbitrary h-relations.

9Randomisation has been employed in a diUerent way for routing on fat-tree networks by randomly resending groups of
messages [GL96]. However, it lacks the simplicity of two-phase randomised routing.

51

Chapter 4. General-purpose parallel architecture

The following theorem summarises the main theoretical result from the study of two-phase
randomised routing, establishing that hypercubic networks can deliver on-line simulations of arbitrary
bounded-degree networks.

Theorem 5 (Valiant [Val90b]). With high probability, in O(logN) steps, every h-relation can be
realised on an N -node butterWy and every (h logN)-relation can be performed on a N -node hypercube.

Empirical evaluation of two-phase randomised routing on hypercubes, folded-Clos and shuYe-
exchange networks strongly supports this result [VB81], [MTW93, Ch. 7].
There are two important practical implications of two-phase randomised routing:

• packets travel twice the average path length and in order to maintain throughput per node in
general networks, the capacity must be doubled by replicating all links;

• to avoid deadlock occurring between the two routing phases, the network must be divided
into two components, where one component performs the Vrst routing phase and the other
performs the second [MTW93, Ch. 7].

A special case is with multistage indirect networks since messages can pass though a randomly
chosen middle-stage node with exactly the same eUect as routing via an intermediate node. By
doing this, there is no increase in the average path length, additional links are not required to scale
throughput and it is also not possible for deadlocks to occur between the routing phases, since such a
route cannot contain any cycles.

4.1.6. Characterisation

For a universal network, the latency scales logarithmically with the number of nodes and the
throughput per node scales by at most a logarithmic factor. The combination of a universal routing
scheme ensures that these bounds are delivered for all communication patterns. The consequence of
this is that the structure of the network is independent from anything that it simulates and can thus
be characterised by just two parameters, the grain (g) and the latency (`) [Val90a, May94].

DeVnition 4.5 (Grain). The grain of a network is the communication bandwidth, the ratio between
the rates of computation and communication, and deVned as

g =
1

time steps per unit communication

assuming a single computational operation can be performed in one time step.

Ideally, the rates of computation and communication are matched equally with g = 1 so that an
operand can be communicated every step and a high rate of processing can be sustained. Thus, in t
steps, t operations can be performed and t/g messages can be exchanged. To note, this deVnition
of granularity diUers from the program granularity deVned in §3.1.2 [p. 19], which was the ratio of
sequential work to parallelism.

DeVnition 4.6 (Latency). The latency of a network, measured in units of time, bounds the time for a
message to be delivered and contributes to the value of g. It is determined by three components and
deVned as

` = communication startup latency + network latency +
message size

channel throughput

The startup latency is the time taken at the source and destination to setup a connection. It is
determined by the processor and its interface to the network; in particular, the time required to
invoke the operation from a process and to move data from the process into the network, or vice

52

4.2. Switching mechanics

versa (the components of this latency and the processor and its interface to the network are discussed
in §4.3.1 [p. 58]). The network latency is the elapsed time after the head of the message enters the
network to it Vrst arriving at the destination and it depends on the distance travelled and switching
delay at each node. The third component of ` is the time taken for the contents of the message to be
transmitted through the network. This is determined by the channel throughput, the rate at which
messages can be delivered along the channel of communication. The throughput is the eUective
bandwidth in the presence of other communication traXc in the network.
To sustain computational work in machines where ` is large and g is low, large messages have

to be sent. This restricts processing to problems that involve large amounts of data transfer. By
doubling g for a particular machine (bringing it closer to 1), the potential amount of concurrency
that can be employed can be doubled. This is because a sequence of t operations on a message can
be split into two processes with a message sent from one to the other, so that they both execute t/2
operations. A general-purpose machine should therefore support the eXcient execution of a wide
class of programs, including those with small problem sizes, by allowing parallelism to be employed
to scale performance. In particular, a machine must support eXcient communication with a low ` for
small problem sizes.

4.1.7. Cost

The universality results discussed depend on the hypercubic family of networks, which are substan-
tially more expensive to implement, in terms of the number of switching elements and links, than
other less well-connected networks such as arrays and trees (see Table 4.1). It is important to ask can
less-expensive networks be used to obtain similar universal behaviour? It is however easy to argue that
this is not possible; the following argument is based on one made by Valiant in [Val88].
Since a universal machine is structurally independent from any it simulates, there is no locality

in the simulation and messages will on average travel the diameter of the network d (to within a
constant factor). For a network with N terminals and a communication grain g, then the number of
messages in Wight from a single node will be d/g. If there is no communications bottleneck, i.e. the
per node throughput scales less quickly than N , in the system overall:

s =
total capacity

number of terminals
≥ d/g

Since g is essentially Vxed and d increases with N , the capacity of a network has to exceed the
number of components it connects by a factor of at least d and as the diameter of practical networks
is at least Ω(logN), s therefore has to be at least Ω(logN). In the hypercube, each node provides
the logarithmic connectivity and in the related networks it is provided by a logarithmic number of
nodes per terminal.

It has also been argued by Dally [Dal90] that low-dimensional arrays (in 2 and 3 dimensions) have
lower latency and higher throughput than high-dimensional networks such as hypercubes when the
number of links is increased to match the bisection bandwidth in the hypercube. This is due to a
larger number of paths in the permutation using links in a particular dimension and since there is a
higher per link bandwidth, it permits greater sharing of the available network capacity.
If one were not to consider the theoretical limitations of low-dimensional networks, Dally’s

argument for their use appears to be convincing, but it is based on the assumption that it is acceptable
to permit adversarial communication permutations to occur. Using low-dimensional networks will
cause message latencies to be highly variable and programs will require careful mapping to the
network, during compilation and/or at run time, to avoid congestion hot-spots.

53

Chapter 4. General-purpose parallel architecture

crossbar

in1

in2

inn

...

out1

out2

outn

...

routing &
arbitration

Figure 4.8.: Block architecture of an input-buUered n × n crossbar switch. With this, any input port can
be connected to any output port according to the routing and arbitration control. Bidirectional
communication links are connected to pairs of input and output ports.

n × n
crossbar
switch

link1 linkn/4+1

link2 linkn/4+2

linkn/4 linkn/2

...
...

t1 t2 tn/2

· · ·

terminals

(a) connections to a terminal-switch

n × n
crossbar
switch

link1 linkn/2+1

link2 linkn/2+2

linkn/2 linkn

...
...

(b) connections to a non-terminal switch

Figure 4.9.: Connectivity of a high-degree crossbar switch. A terminal switch (a) can use half of the available
links of a switch to connect terminals and the other half to connect to the rest of the network. A
non-terminal switch in a multistage network (b) uses all links to connect to the network.

4.2. Switching mechanics

Switching is concerned with the mechanics of transmitting messages between nodes in a network.
This capability is implemented in a discrete switch component and one is included at each node.
This section discusses the main issues relating to the operation of a switch with regard to building a
universal communication network with two-phase randomised routing.

4.2.1. Crossbar switches

A crossbar switch allows all inputs to be simultaneously routed to their outputs. Switches are
connected by links that connect an input port to the output port of another switch and vice versa.
Figure 4.8 illustrates the basic architecture of a conventional input-buUered n× n crossbar switch.

It is beneVcial to use high-degree switches to build networks because connecting multiple terminals
to each one, the network diameter can be reduced. With a switch of degree-8 or greater, it is practical
for half the links to connect terminals, leaving suXcient bandwidth and connectivity in the set of
remaining links; this is illustrated in Figure 4.9.
The scaling of a switch is limited primarily by the delay and area requirements of the central

crossbar component. A number of high-degree single-chip designs have been proposed and shown to
be eUective, such as the INMOS C104 32×32 switch [MTW93, Ch. 3], [JDFJ97, App. A], the 64× 64

54

4.2. Switching mechanics

YARC switch [KDTG05, SAKD06], and the Swizzle-Switch, which scales up to 64 × 64 [SDTO+11,
SDM+12a, SDM+12b].
Incidentally, with an increasing level of parallelism on-chip, various proposals for on-chip folded-

Clos networks have been made with the stated aims of reducing latency, improving capacity and
simplifying programming. There are proposals for electrical implementations, e.g. [BD06, LGM+09,
KYAC11], and optical implementations, e.g. [JBK+09, ZGY10]. However, these only consider rela-
tively small systems up to 64 processors and low-degree 4×4, 8×8, or 16×16 crossbar switches.

4.2.2. Switching schemes

A switching scheme deals with the allocation of resources for the movement of data around a network.

Store-and-forward switching

Store-and-forward or packet-switching splits a message into one or more Vxed-length packets. Packets
are individually routed to their destination and consist of data and routing information. Typically,
the routing information is small and must have at least dlogNe bits to specify the destination, it
may also contain book-keeping and sequencing information. Every link is able to buUer at least one
packet and a packet makes a hop from one node to another by moving the whole packet from the
output buUer to the next input buUer. The transmission latency of store-and-forward switching is
proportional to the product of the size of the packet and the distance.

Circuit switching

Circuit switching reserves a complete path between the source and destination before any data is sent.
The circuit exists until it is closed either by the source or destination. This is advantageous for long
messages as the cost of setting up the route is only paid once and, with an active circuit, data will
experience no contention and can be streamed at a constant rate.

Wormhole switching

Wormhole switching is similar to store-and-forward switching but it reduces the latency and the
per-link buUering requirement. Messages are again sent as a sequence of packets but each packet is
transmitted as a sequence of Wits, allowing the packet to be pipelined in the network, like a worm
(typically, Wits are a number of bytes, up to one word). A header Wit opens a route through the
network, subsequent Wits follow it and experience no switching delay, then the Vnal ‘end of packet’
tail Wit closes the route. Data can be streamed in this way with an open route or packetised by closing
the route after a payload has been sent. As such, wormhole switching can be seen as a form of
dynamic circuit-switching where a complete route is established before messages are transmitted.

Packet latency is independent of the size of the payload since the header can progress immediately.
This is an important ability in the context of a general-purpose system, since the size of link buUers
can be chosen independently of packet sizes. The buUering requirement is also reduced as it is
necessary to store only a small number of Wits at each node.
Wormhole switching does however introduce the possibility of deadlock when a header becomes

blocked by contention for a link and the rest of the packet also stalls. The remaining tail of the ‘worm’
will occupy buUers and potentially block other packets. To avoid this, it must be guaranteed that
every packet must be always be able to make progress in the network. This can be done either with
the use of virtual channels (explained below in §4.2.3 [p. 57]) or by employing a protocol that does not
allow ‘worms’ to become blocked in the network. Such a protocol will ensure the receiver is ready
before transmitting the payload.
Figure 4.10 illustrates the operation of wormhole switching and how it can be used to perform

packet switching and circuit switching.

55

Chapter 4. General-purpose parallel architecture

H
B
B
B
B
T

source

packet

B
B
B
T

HB

B
T

HBBB

...

HBBBBT

sink

worm

(a) wormhole packet switching

H

source

H

...

H

sink

wormhole

(b) wormhole circuit switching

Figure 4.10.: An illustration of the operation of wormhole switching. In (a), a packet consists of a sequences
of Wits: a header (H), followed by a number of body (B) Wits, constituting the message data, and a
tail Wit (T). Each box represents a communication channel with input buUering for two Wits and
the horizontal sequences of boxes represent a path in the network. As the header Wit traverses
the network towards the destination and as it does this, establishes a route between input and
output links in each switch. The proceeding Wits then traverse this route, following the header.
As the tail Wit passes through, the route is closed. The sequence of Wits contained in the channel
buUers, spanning multiple switches is referred to as the worm. In (b) a single header Wit is sent to
establish a network route, along which data can be streamed.

56

4.2. Switching mechanics

4.2.3. Flow control

Flow control determines the allocation of network resources, such as buUer space and channel
bandwidth [JDFJ97, §2.1.1], [DT03, Ch. 12]. This is necessary to make eUective use of the available
resources and to stop buUers from being over-run.

Credit-based flow control

Credit-based Wow control is a simple way to manage the use of buUers to permit a node to output on
a link only if there is suXcient buUer space on the corresponding input at the receiving node. This
works by each output link maintaining a count of the available buUer space at the corresponding
downstream node. When a packet (or Wit) is sent the count is decremented; when the downstream
node forwards the packet, it sends a credit message back upstream and the count is incremented.
In this presence of congestion, credit-based Wow control provides a ‘back pressure’ from the busy

link, initially causing packets that must also traverse this link to become blocked. As further packets
become blocked, this eventually stops packets from being injected into the network and therefore
allows the delivery of packets in transit.

Virtual channel flow control

Virtual channels are used to decouple resources associated with transmission on channels from the
physical links [Dal92], [DT03, Ch. 16]. A single virtual channel contains a buUer and some state
information, and a number of virtual channels are associated with each link. A particular virtual
channel can be assigned to use a physical channel when the packet that has been allocated is able to
progress, thereby allowing it to use a link when other packets using the same link are blocked. This
provides beneVts for communication latency and throughput.

Virtual channels therefore allow network resources to be better utilised when there is competition
for their use and are most relevant to networks and routing strategies that may cause areas of high
congestion. In particular, with low-dimensional array networks where the bisection size scales more
slowly than the number of nodes. With high-capacity networks that provide constant throughput
scaling per node, and when they operate in conjunction with a routing strategy that can evenly
balance load, such as two-phase randomised routing, there will be relatively little link contention.
In this situation, the utility of virtual channels is diminished (the reasons for this were explained in
§4.1.7 [p. 53]).

The cost of virtual channels is the additional buUering required for each channel and the allocation
and arbitration logic, which can all contribute signiVcantly to the area of a switch. With high-
dimensional networks, these costs are magniVed. Additionally, the complexity introduced into the
behaviour of a link can impact signiVcantly on the overall predictability of the network. Another
way to look at this argument is that a virtual channel switch invests more buUering in fewer links,
whereas a high-degree switch invests in more links with less buUering, or a more highly connected
networks invests more heavily in communication capacity.

Another use of virtual channels is to break deadlocks in routing schemes [DA93]. They can do this
by separating the virtual channels of each link into a number of groups to obtain a partitioning of the
network into independent sets of virtual links. Communication cycles are broken, by distributing
them between the partitions to ensure deadlock cannot occur. The main disadvantage of using virtual
channels in this way is that the number of virtual channels must be increased by a factor of the
number of partitions required to guarantee deadlock freedom, with no performance beneVt.

Buffering requirement

The theoretical analysis of two-phase randomised routing is based on store-and-forward packet
routing and unbounded buUers, and the analysis of the run time implies that the size of a queue

57

Chapter 4. General-purpose parallel architecture

will grow to at most O(logN) with high probability since this is the time taken to deliver a random
relation. Because of the bound holds with high probability, some links will experience high contention
but with very low probability. In these cases there will be some additional communication delay.
Experience with using the C104 to build universal interconnects has demonstrated that little

buUering is required with wormhole switching. For each inbound and outbound link around one
packet (around 4 to 8 Wits) is suXcient [JDFJ97, Appx. A].

4.2.4. Routing mechanics

Routing mechanics refers to the implementation of a routing scheme, i.e. the mechanism by which the
output port of a switch is chosen to forward a packet if it has not reached its destination. In general,
this is done either with a routing table at each node that records mappings of links to destinations, or
by a direct calculation of the next destination according to a rule. Only the former is discussed here,
see [DT03, Ch. 11] for details on the latter.
Interval routing is a table-based scheme that provides an eXcient way to implement deterministic

routing schemes [VLT87]. It works in the following way. In a network with N destinations, each is
labelled with a unique value from the range 0 to N − 1. Every link is then assigned a contiguous
interval of labels, non-overlapping with other links at a given node. A packet is routed along a given
link if its destination lies within the link’s label range. Intervals are stored in a table and this requires
O(d) space where d is the degree of the node. Routing decisions can be made very quickly as they
are based on table lookups, which maximises the beneVt of wormhole switching.
Interval routing information can be assigned to links independently. This provides two key

abilities [MTW93, Ch. 3]. First, with grouped adaptive routing, links can be bundled together between
two switches and assigned the same intervals. Then, a link can be chosen adaptively based on which
one becomes available Vrst. Second, the network can be partitioned into independent components by
assigning routing intervals to disjoint sets of links.
A simple way to implement two-phase randomised routing is to transmit packets with two

headers, one to specify the randomly chosen intermediate node and the other to specify the Vnal
destination [MTW93, Ch. 1]. Both headers contain a Wag to indicate whether the packet is in the Vrst
or second phase of routing. When the Vrst header arrives at the intermediate node, it is recognised as
being in the Vrst phase and discarded. When the second header then arrives, it is used to initiate
the second phase and it is sent towards the destination. In direct networks, the network must be
partitioned to separate the routing of packets between the two phases and prevent deadlock. In
indirect networks, links are partitioned into an ‘up’ component for the Vrst phase with intervals
corresponding to a labelling of the middle-stage switches and a ‘down’ component for the second
phase with intervals corresponding to the labelling of the terminals.

4.3. Processing

The chapter so far has discussed the structure and operation of a universal interconnection network
that is parameterised by just two variables: the communication latency ` and the communication
grain g. This section discusses the general characteristics of the processors that are connected to it
and how they aUect the capability of the system.

4.3.1. Network interface

The network interface sits between the data paths of a processor and the network, providing a
connection to a particular switch, thereby allowing it to engage in communication with other
processors.
The network interface performs a translation of messages from the processor into the format

required by the network switches, or vice versa, thereby implementing any link-level network

58

4.3. Processing

program

processor

network interface

source

program

processor

network interface

destination

sender
startup
latency

receiver
startup
latency

network latency

Figure 4.11.: An illustration of the components of communication latency, highlighting the components of
the startup latency at both the sender and receiver.

protocols. Wormhole switching, for example, requires a message to be broken up into Wits and
additional Wits added that contain routing information. This might be performed by the network
interface. It will also implement link-level protocols, for example to perform credit-based Wow control
by generating additional messages, and the physical network layer, which is concerned with the
encoding and transmission of bits onto the wires implementing the link itself.

Communication startup latency

The processor’s communications system, including its network interface, contributes a Vxed pro-
portion of the message latency, with the rest determined by the interconnect. This is illustrated by
Figure 4.11, which shows the contributing components.
The overhead in setting up a communication depends on the interface between a processor and

the interconnect and the eXciency of the following three mechanisms, operating at either end of a
communication channel. The latency they contribute is typically not dependent on the message size.

1. Software latency. The latency of dispatching or receiving a communication to or from a program
to the hardware. This relates to the preparation and processing of a message as well as the
traversal of software between the programs and hardware, including the overhead of additional
control code, procedure calls and any associated memory accesses.

2. Data movement latency. The transfer of data from registers in the processor onto the link.
When this involves main memory and the associated mechanisms of direct memory access
(DMA) and interrupts, the overhead can be signiVcant.

3. NotiVcation to receiver latency. NotiVcation of the receiving process that it is being sent a
message. If this is an interrupting event, then it might be necessary to perform a context switch,
again accessing memory, to execute the receiving process.

Communication latency can therefore be reduced by:

• closely integrating the network interface with, or in, the processor architecture to reduce the
critical path between communication operations in a program to the data entering the network;

• by avoiding the use of main memory for messages and instead using fast dedicated memory.

Several processor architectures have employed these optimisations to reduce communication
latency. The most prominent examples are the INMOS transputer [INM88c] and the descendent
XMOS XS1 architecture [May09], which provide communication operations at an architectural level.
This allows messages to be transferred directly from the processor pipeline into message buUers
ready to be transmitted onto the network. In the XS1 architecture, the execution of a send operation
will move the data in a single cycle from the processor registers into a message buUer. In the next
cycle, the message can be transmitted on to the network [May11]. Additionally, the provision of

59

Chapter 4. General-purpose parallel architecture

hardware support for a number of processes with dedicated registers and a simple scheduler avoids
context-switch overhead [May10].

A similar approach is taken in theMessage-Driven Processor (MDP) of theMIT J-Machine [NWD93],
which provides architectural integration of communication operations with dedicated data paths and
hardware scheduling of processes based on message reception [DW89, DFK+92, DCC+98]. Avoiding
main memory for messaging is also supported by experience with the Intel Single-Chip Cloud
Computer (SCC), where a factor of 15 improvement in latency was observed by moving messages
onto the network using a small 16 KB on-chip buUer memory, rather than using the main oU-chip
memory [HDH+10]. In contrast to these ‘Vne-grained’ architectures, the setup cost of communication
in the BlueGene family of supercomputers, for example in the Q system [CEH+11, HOF+12], is much
higher at around 700 ns, which corresponds to around 1000 local computational operations. This is
particularly surprising since the latency of one hop between two switches in the network is around
45 ns, a factor of 15 diUerence.

Remote memory access

Remote memory access (or remote direct memory access (RDMA) as it is also known) is a mechanism
for accessing remote memories in distributed-memory systems. It is implemented in the network
interface and bypasses the execution pipeline of the processor.

RDMA can be supported directly by the interconnect and network interface to avoid any software
overheads at the target processor in servicing an access. To do this, a remote memory access is
made by sending a message preVxed with a special header. Instead of the message being received by
software process, it is intercepted by a mechanism in the network interface and connected to the
memory system that performs the access and generates a response to complete the transaction.

RDMA is widely used in conventional computer networks and supercomputers where the complex-
ity of the operating system and software stack would otherwise add signiVcant latency. The Quadrics
interconnect [PFH+02] and the Cray Gemini interconnect [ARK10] for example, both support RDMA.
Similar schemes have also been proposed for chip-level networks such as [JM02].

4.3.2. Efficient support for parallelism

The Vnest level of parallelism is between individual operations and called instruction-level parallelism.
Superscalar processors are designed to exploit this and require a large amount of specialised logic to
identify when operations are independent and when to dispatch them to diUerent execution units and
combine their results. However, there is little inherent parallelism in typical sequential instruction
streams and this type of parallelism can deliver at most a factor of 2 to 4 speedup; the sequential
capabilities of processors is discussed in §9.6.1 [p. 200].

The other more general form of parallelism is between streams of instructions and called task-level
parallelism. Exploitation of this requires the creation and termination of parallel processes. Clearly,
for this to be economical, the cost of creating, initialising, and terminating a parallel task, at the very
least, must be less than the amount of work it subsequently performs otherwise the work could more
quickly be performed sequentially. Furthermore, communication and synchronisation are required to
coordinate the activity of a collection of processes, and the overheads of these will limit the level of
parallelism in the same way. It is only economical to communicate data when the cost of doing so
is less than the resulting work performed by the receiving process, and it is only economical if the
additional cost of synchronising between more processes is less than the beneVts from increasing
their number.
There is abundant parallelism in most problems (or conversely, very few problems are inherently

sequential) but the ability to exploit parallelism depends on the time taken to create and terminate
parallel processes and synchronisation and communication latency. Systems in which these mecha-
nisms are ineXcient can only be applied to problems that provide large amounts of work to obtain

60

4.4. A short survey of real machine architectures

speedups from parallelism. With the MDP of the J-Machine, it is economical to create processes of
a few hundred operations [NWD93]. With the transputer and XS1 architecture, a process can be
created and initialised in a few tens of operations and processes executing on the same processor can
synchronise in a single cycle (equivalent operations between processors can be implemented with
message passing and their performance will depend on the network).

4.4. A short survey of real machine architectures

This section brieWy surveys some of the overall trends in real parallel architectures. For brevity, this
focuses on the interconnection topology and communication model, rather than the details of the
processor and interconnect architecture.
Table 4.2 provides a chronological summary of a selected set of systems, both large multi-chip

systems and more recent systems integrated onto a single chip.

4.4.1. High-performance computing

HPC/supercomputer systems have been, and remain, at the forefront of the large scale use of
parallelism to improve performance. Distributed memory architectures have proven to be the most
practical and economical way to scale the computational capacity with available technology to deliver
the highest levels of performance.

Distributed memory machines with interconnection networks based on hypercubes were popular
in the mid-1980s with systems such as the nCUBE 10 [HMS+86], Cosmic Cube [Sei85], Connection
Machine 1 [TR88] and Intel Personal Super Computer (iPSC) [Bok90, Arl88]. However, this popularity
shifted at the end of the 1980s to the use of 2- and 3-dimensional mesh- and torus-based interconnects,
likely due to the implementation diXculties associated with hypercubes and inWuential work by
Dally [Dal90]. Despite the popularity of low-dimensional networks, multistage networks based on
folded-Clos/fat-tree topologies have also been popular, in systems such as the Meiko Computing
Surface 2 [BCM94], the Connection Machine 5 [LAD+92] and the IBM Roadrunner [BDH+08]. There
are several likely reasons for this popularity, one is that they are straightforward to build out of
commodity networking equipment, whereas direct networks require more specialised switches. The
other is that multistage networks are eUective in distributed-memory systems that implement a
global address space. Examples include SGI systems, such as the Origin 3000, with the NUMALink
interconnect [WRRF05].

Typical modern high-performance systems employ a custom interconnect since the performance of
commodity networking equipment is not satisfactory, but they generally use commodity components
at the compute nodes. This includes multicore shared-memory processors, conventional DRAM and
in some systems accelerator-devices, such as the Nvidia Tesla K20 [NVI12] GPU, and more general-
purpose devices such as the Intel Xeon Phi architecture [Int13]. The use of commodity components is
due to the economies of scale gained from consumer markets weighed against the enormous cost of
developing custom chips.

4.4.2. Single-chip systems

The need for scalable general-purpose systems has led to a number of proposals for explicitly parallel
tiled architectures, where a system is integrated on-chip as a regular arrangement of processor-
memory pairs connected by an interconnection network. This approach allows memories to be
more tightly bound to processors and local and access latency to be reduced. Prominent examples
include the Stanford FLASH [KOH+94], the MIT RAW [WTS+97] and its descendant Tilera Tile archi-
tecture [WGH+07], Smart Memories [MPJ+00], the Ambric Massively Parallel Processor Array [BJW07].
and the Kalray Multi-Purpose Processor Array (MPPA) [Kal12]. However, despite the low-diameter
high-capacity networks required for general-purpose parallel computation, these systems all employ

61

Chapter 4. General-purpose parallel architecture

System Citation Appeared Interconnect
topology

Communication
model

Multi-chip/high-performance systems
Cray 1 [Rus78] 1976 custom SIMD/SM
ALICE [DR81] 1981 Delta* DF
NYU Ultracomputer [GGK+82, Got86] 1982 Omega* SM
CM-1 [TR88] 1983 hypercube MP
Cosmic Cube [Sei85] 1985 hypercube MP
nCUBE 10 [HMS+86] 1985 hypercube MP
Intel iPSC [Bok90] 1985 hypercube SM
Manchester Data-Wow computer [GKW85] 1985 ring DF
Meiko Computing Surface [Mei88] 1986 2D mesh MP
GRIP Machine [PJCSH87] 1987 bus DF
Data DiUusion Machine [WH88] 1988 folded Clos SM
CMU/Intel iWARP [BCC+88] 1988 2D torus DF
Intel iPSC/2 [Arl88] 1988 hypercube SM
MIT J-Machine [NWD93] 1990 3D mesh MP
MIT Alewife [ACJ+91] 1991 2D mesh SM & MP
Stanford DASH [LLG+92] 1992 2D mesh SM
Cray T3D [KS93] 1993 3D torus MP
Meiko CS-2 [BCM94] 1993 folded Clos MP
CM-5 [LAD+92] 1995 folded Clos MP
SGI Origin 3000 [WRRF05] 2000 folded Clos SM
IBM BlueGene/L [GBC+05] 2004 3D torus MP
Maxeler MPC [DFMP08] 2008 ring DF
IBM Roadrunner [BDH+08] 2008 folded Clos MP
XMOS XMP-64 [XMO10] 2010 hypercube MP

Cray XK7 [ARK10] 2012 3D torus MP & SM

Single-chip systems
Stanford FLASH [KOH+94] 1994 2D mesh SM & MP
Berkeley IRAM [PAC+97] 1997 crossbar SIMD/SM
MIT RAW [WTS+97] 1997 2D mesh DF
Smart memories [MPJ+00] 2000 2D mesh SM
PicoChip picoArray [PTD+06] 2000 2D mesh MP
Clearspeed CSX [Cle06] 2002 2D mesh SM
UC Davis AsAP [TCM+09] 2005 2D mesh DF
Ambric MPPA [BJW07] 2006 2D mesh MP
XMOS XS1-G4 [XMO12b] 2008 crossbar MP
Intel SCC [HDH+10] 2009 2D mesh MP
Tilera Tile [WGH+07] 2010 2D mesh SM
IntellaSys SEAforth [Int08] 2010 2D mesh MP
Adapteva Epiphany [Ada11] 2011 2D mesh SM
Kalray MPPA [Kal12] 2012 2D mesh MP
Intel Xeon Phi [Int13] 2013 ring SM
Nvidia Tesla K20 [NVI12] 2013 custom SIMD/SM

Table 4.2.: A short survey of real parallel machine architectures, divided into systems comprised of multiple
chips, which are generally physically large and mostly built for HPC-type applications, and systems
integrated on a single chip. The following abbreviations are used: data-Wow (DF), message passing
(MP), shared memory (SM) and single-instruction multiple-data (SIMD). The Delta and omega
networks marked with a ‘*’ are indirect multistage and closely related to a folded Clos.

62

4.5. Summary

a 2D mesh interconnect in which communication latency scales linearly with the number of tiles and
programs must be carefully mapped to preserve locality to obtain good performance.

Indeed, where the class of programs is limited to a speciVc domain, low-dimensional array intercon-
nects can be eUective. Examples of such systems include the UC Davis Asynchronous Array of Simple
Processors (AsAP) [YMA+08], the PicoChip picoArray [PTD+06] and the Adapteva Epiphany [Ada11],
all for digital signal processing (DSP). In contrast, the INMOS transputer [INM88c] and descen-
dant XMOS XS1 architecture [May09] were designed to support general-purpose parallelism with
high-performance networks [MTW93, May10].

4.5. Summary

This chapter has described the essential ingredients of a scalable general-purpose parallel computer
architecture. It Vrst described the theoretical aspects of a communication network that can support
arbitrary patterns of communication and then then practical aspects of implementing such a network.
A network is universal in the sense that it can simulate any other network eXciently. This means

that when the nodes of a guest network to be simulated are mapped to the nodes of a host network of
the same size, the host can support any pattern of communication in the guest network with at most
a logarithmic-factor slowdown in the size of the host network (larger guest networks will require
additional time proportional to the diUerence in size).

Hypercube networks are universal for oU-line simulations when the pattern of communication to be
simulated is known in advance, but for general parallel computations, the pattern will not always
be known. By using Valiant’s two-phase randomised routing scheme [VB81], simulations can be
performed eXciently on-line. Hypercubes themselves pose problems to build because the degree of
nodes is not Vxed, but there are a number of Vxed-degree hypercube variants that are better suited.
Because these appear widely in the literature, they were surveyed and their relationships described
to show that the theoretical results for one variant also apply (up to constant factors) to the others.

A universal communication network can be characterised by just two parameters, the communica-
tion latency, `, and the communication grain, g, which is the ratio between the rates of computation
to communication. The theoretical properties of the network hold asymptotically; it is the details of a
speciVc implementation that determine their absolute values. In particular: a high-degree switching
element allows multiple terminals to be attached to reduce the network diameter; wormhole switching
minimises latency, requires only small amounts of buUering and supports both variable-sized packets
and circuits for streaming; and interval routing can be used to implement two-phase routing and it
enables the adaptive use of sets of links between the same nodes to distribute load.
Finally, the processor and its interface to the network determine the startup latency, a crucial

component of both ` and g, and the ability of the processor to exploit all of the available parallelism
in a particular problem depends on how quickly parallel processes (executing on the same processor
or a diUerent one) can be created, can synchronise and can be terminated.

63

Part II.

THE UPA AND THE SIRE LANGUAGE

65

CHAPTER 5.

THE UNIVERSAL PARALLEL ARCHITECTURE

programs

sire

compilation

model

UPA

This chapter describes the Universal Parallel Architecture (UPA). It is scalable, general purpose, simple
to implement and it provides the natural target for the compilation of sire programs.

5.1. Overview

The UPA is a programmable computer architecture that consists of a set of tiles, each containing a
processor, a memory and a network interface. The tiles are connected by an interconnect that supports
eXcient communication between all pairs of tiles.

The UPA is universal in the sense that it can be programmed to perform the function of any parallel
machine with a reasonable degree of eXciency. It can therefore execute arbitrary programs eXciently
and this provides independence of the structure of any UPA implementation from that of any program;
a particular machine is characterised only by the communication grain g and latency `. This simpliVes
the compilation of programs and facilitates portability between diUerent implementations.
The interconnect supports eXcient packetised and streamed communication, which provides a

Vrm basis for a range of programming paradigms (each with diUerent parallel structures), including
message-passing, PRAM-style shared memory and conventional sequential execution. These can also
be combined in programs that allocate and deallocate processors dynamically.
It is possible to implement the UPA eXciently with current technologies. A single UPA chip can

contain hundreds or thousands of tiles and multiple chips can be combined to create larger systems.
Figure 5.1 below illustrates the software-level view of the UPA.

tile1 tile2 tilen

network interface

processor

memory

· · ·

universal network (`, g)

Figure 5.1.: A high-level view of the UPA. A collection of processor-memory tiles are connected by a universal
network that provides eXcient communication between all pairs of tiles with a latency ` and at a
rate g.

5.2. Interconnect

The UPA interconnect combines a universal network and universal routing strategy to support arbitrary
patterns of communication with scalable throughput and low bounded delay. A Clos network [Clo53]
can support universal two-phase randomised routing [VB81] with no increase in the average path
length and has a Wexible structure that facilitates a simple and eXcient implementation.
The implementation of the network follows the design of the C104 switch [MTW93, Ch. 3]:

• a deterministic routing scheme is implemented with interval routing [VLT87];

67

Chapter 5. The Universal Parallel Architecture

• two-phase randomised routing [Val82] is implemented by generating packets with two headers
(one to specify a randomly-chosen middle-stage node and the other to specify the destination)
and by partitioning the network into ‘up’ and ‘down’ components for the two phases;

• sets of links between two switches can be used adaptively with grouped adaptive routing
(assigned the same intervals);

• data is transmitted on the network using wormhole switching because this supports both
variable-sized packet switching and circuit switching, minimises latency and requires only
small amounts of buUering.

5.3. Processing

The universal capability of the UPA stems from the combination of a universal communication network
able to support arbitrary patterns of communication and universal sequential processors able to execute
arbitrary sequential programs. The XMOS XS1 architecture [May09] is used for the processor cores
because it is universal and provides direct support for communication and parallelism. However,
the particular choice of architecture for the UPA is relatively unimportant but there are a number of
high-level considerations.
At a minimum, it is essential that a UPA processor can support the concurrent execution of a

collection of processes, concurrent input and output, and a rate of communication that matches the
capability of the interconnect.
To maximise the level of parallelism that can be exploited from particular problems with limited

sizes, it is essential to minimise the communication startup latency, because this contributes a Vxed
portion of the network latency, `, and to minimise the overheads of process creation, synchronisation
and termination.
Ideally, the execution of a UPA processor is deterministic to eliminate unexpected variations in

timing called jitter. This is because the complexities of conventional sequential processors to improve
performance, such as pipelining, superscalar execution and branch prediction reduce the predictability
of execution timing, which can be magniVed with high levels of parallelism and cause signiVcant
ineXciency.
Finally, reducing the complexity of a processor also has the advantage of reducing the area to

maximise the number of processors that can be integrated on to a chip (this is discussed further at
the end of Chapter 9).

5.4. Memory

Larger memories occupy more area and incur longer access latencies. When latency is signiVcantly
more than the time for basic processor operations, the use of caches is necessary, at the expense of
predictability and area. The approach of the UPA is to provide each processor with a small memory
that has an access latency close to the time for a basic processor operation but also with the ability
to eXciently access the memory of other tiles. This allows tiles to be viewed as units of processing
or storage and results in a system where the amount of memory per tile does not need to be over
provisioned because larger memories can be emulated with collections of tiles (this capability is
investigated in Chapter 10) and longer access latencies over the network can be dealt with in software,
for example by implementing a cache or by moving program components to operate in-place on data.
Memory accesses from remote tiles is supported primarily by the interconnect with low-latency

communication of arbitrary-sized messages, but is optimised with a mechanism for remote memory
access. This is implemented in the network interface and avoids any software overheads in accessing
memory. The remote memory access mechanism can be targeted directly at compilation to treat tiles
as memories to eUectively increase the ratio of memory to processing.

68

5.5. Packaging

The size of a tile memory should be chosen so that the UPA delivers good performance over all
programs, where at one end of this spectrum they are bound to the performance of the processor and
at the other end they are bound to the performance of the memory. With eXcient inter-tile accesses,
this implies a balanced provision of memory and processing, and as such can never exhibit more than
a factor of two ineXciency for any program, whether it is a large-memory sequential program or a
highly-distributed parallel program.

For some cases it is possible that particular implementations of the UPA to be specialised towards
computationally-intensive or memory-intensive workloads by altering the size of the tile memory.

5.5. Packaging

The regular and hierarchical structure of the UPA with a folded Clos network [JDFJ97, Ch. 3] allows it
to be constructed from one or more identical smaller chips. A chip will contain a set of replicated
tiles, switches and communication links and can be produced at a size to provide the best economic
trade-oU between performance and system cost, similar to the production and packaging model of
commodity DRAM.1 A particular number of chips are chosen to build a system to provide a certain
memory or processing capacity.
A folded Clos network can be rearranged to enable a hierarchical multichip packaging with a

complete sub-folded Clos integrated on a single chip and for multiple chips to be combined with
connections to a new middle stage. This is achieved by connecting tiles to the original middle-stage
switches so that the network can be recursively expanded and the ‘longer’ connections occur closer
to the new middle-stage switches (see Figure 4.6c in relation to Figure 4.6a). A chip’s middle-stage
switches will have links connected to oU-chip IO so that larger systems can be built with multiple
chips by directly extending the network with electrical or optical connections.
The regular recursive structure of a folded Clos provides further Wexibility in an implementation.

First, it can be constructed from arbitrary Vxed-degree switches, allowing high-degree ones to be
used. With these, a good trade-oU between the switch complexity and resulting network diameter
can be obtained, and multiple tiles can be connected to each switch. Second, because it consists of a
number of levels, each level can be constructed independently, allowing the use of diUerent-degree
switches and diUerent provisioning of bandwidth between stages.
A packaging of the UPA based on this approach used for a detailed multichip implementation

model using current technology is presented in Chapter 9.

1 A low cost-performance ratio is the primary driver in the production of commodity DRAMs. The basic memory cells
and supporting circuits are replicated millions of times on a chip and consequently the designs are highly optimised.
DRAM chips are produced in high volumes and are produced at a size which makes the best trade-oU between cost and
performance, but run much slower than logic devices such as processors.

69

CHAPTER 6.

THE SIRE PROGRAMMING LANGUAGE

programs

sire

compilation

model

UPA

Sire1 is a communicating-process programming language designed for the highly-parallel distributed-
memory UPA. Sire provides facilities for sharing and abstraction that can be used to build distributed
parallel subroutines and shared-access data structures; its design is based on the occam programming
language and, in the occam philosophy, includes the smallest set of features necessary to this. Sire
is capable of being compiled using simple techniques to produce eXcient programs, allowing the
programmer to directly exploit the UPA.

This chapter presents the deVnition of the sire, which introduces the language incrementally, with
each section building on the last. It concludes with a discussion about its relationship with occam
and other language proposals that have provided inspiration to its design.

6.1. The model of computation

A sire program consists of a collection of processes. Each process performs a sequence of commands,
as well as being able to create additional processes. Processes can communicate with each other by
using point-to-point message passing channels, which consist of a connected pair of channel ends
local to either process. Communication also causes processes to synchronise; a sending process waits
until the receiver is ready to receive a message. A special type of process called a server provides a
means of abstraction and forms the basis of a parallel subroutine mechanism.
A sire program is executed by a collection of one or more processors. Each processor has a small

private memory and can execute a number of processes simultaneously. The execution begins on a
single processor and the computation progresses in time and space as processors are allocated and
deallocated dynamically.

6.2. Notation

Since sire builds on occam, it is prudent to present the language in a similar way to the original occam
speciVcations,2 as its successors have also done [May83, Bar92, SGS95]. The presentation uses a
modiVed version of the Backus-Naur Form (BNF) to specify the syntax of the language. In the BNF, a
production rule deVnes a new symbol to consist of a choice of one or more sequences of other symbols,
which are deVned by other rules or are terminal and therefore elements occurring in the program.
Taking part of the command syntax as an example, a production of the form

command = 〈input〉 | 〈output〉

speciVes the symbol 〈process〉 to be the symbol 〈input〉 or 〈output〉. This can also be written with
separate rules in the equivalent deVnition

1The word sire is a verb meaning to create or bear. The choice of this for the name of the language relates to the way in
which a sire program executes, by allocating and deallocating processors dynamically.

2This style of speciVcation has gained inspiration from a number of other languages including Algol [NBB+63], BCPL
(Basic Combined Programming Language) [Ric67], Pascal [Wir71] and the original proposal for CSP [Hoa78].

71

command =〈input〉
command =〈output〉

in order to incrementally introduce elements of the syntax. The symbols 〈input〉 and 〈output〉 are
speciVed with the rules

input =〈chanend〉 ? 〈variable〉
output =〈chanend〉 ! 〈expression〉

The emboldened symbols ‘?’ and ‘!’ are terminals and 〈chanend〉, 〈variable〉 and 〈expression〉 are
deVned in terms of one or more additional production rules.
The notation {cX} speciVes a list of c or more Xs and is equivalent to X1X2 · · ·Xc · · · , and
{c⊕X} speciVes a list of c or moreXs separated by⊕ and is equivalent toX1⊕X2⊕· · ·⊕Xc⊕· · · .

As each part of the language is introduced, fragments of the BNF are given and the semantics of the
syntax explained. The semantics of a small subset of the language are given informally, which allows
the remaining portion to be deVned algebraically, building on the subset. This approach is attractive
since it provides clear semantics and allows simple transformations between diUerent constructs.
The full syntax of the language is included in Appendix A.

Where examples of sire syntax are given the notation
[[
·
]]
is used to distinguish sire syntax from

mathematical notations.

6.3. Overview

The deVnition is presented in the following sections.

Primitive commands . 73
Structured commands . 75
Types, names and scope . 77
Composition . 80
Servers . 83
Replication . 87
Expressions & elements . 90
Procedural abstraction . 91
Program . 97

72

6.4. Primitive commands

6.4. Primitive commands

command = 〈assignment〉
| 〈input〉
| 〈output〉
| 〈connect〉
| 〈skip〉
| 〈stop〉

A program is built from commands and the simplest of these are primitive commands, which are
assignment, connect, input, output, skip and stop.

6.4.1. Assignment

assignment = 〈variable〉 : = 〈expression〉

An assignment command evaluates the right hand side expression and changes the value of the
variable to the result.

Example

v := 1

6.4.2. Input and output

input = 〈chanend〉 ? 〈variable〉
output = 〈chanend〉 ! 〈expression〉

Values are passed between processes using bidirectional communication channels. These consist of
two channel ends that are associated with either process communicating on a channel. Communication
is synchronised, which means that an outputting process must wait for the inputting process to be
ready before any data is sent. This prevents any data from being lost due to programming errors and
precludes the use of buUering.
An input command receives a value from a channel and assigns it to a variable and an output

command evaluates an expression and sends the result on a channel. Matching pairs of input and
output are a distributed form of assignment.

Example

The command

s ! 3

outputs the value 3 on the channel end s and the command

t ? v

inputs a value from the channel end t and sets it to the variable v. When s and t appear in separate
processes and are connected it is equivalent to the assignment

v := 3

73

6.4.3. Connect

connect = connect 〈chanend〉 to 〈chanend〉
chanend = 〈element〉

A connection between two channel ends is established with a matching pair of connect commands.
Each connect command connects a local channel end to the corresponding remote channel end. The
commands terminate when the connection has been established. The channel end itself is an element
that speciVes a name or Veld (see §6.10 [p. 90]).

Example

connect s to t

6.4.4. Skip and stop

skip = skip

stop = stop

The command skip does nothing and terminates, the command stop never terminates, causing
the process to execute no more commands. These commands are used primarily to explain the
behaviour of other constructs in the language.

74

6.5. Structured commands

6.5. Structured commands

command = 〈alternation〉
| 〈conditional〉
| 〈loop〉

The structured commands conditional, alternation and loop are control constructs that are used to
combine commands.

6.5.1. Alternation

alternation = alt { {0 | 〈alternative〉 } }
alternative = 〈guarded-alternative〉

| 〈alternation〉
guarded-alternative = 〈guard〉 : 〈command〉

guard = 〈input〉
| 〈expression〉 & 〈input〉
| 〈expression〉 & 〈skip〉

An alternation command is used to deal with non-determinism by allowing a process to wait for
inputs on a number of diUerent channels. It consists of a list of guarded command alternatives. A
guard consists of an expression and an input on a channel or skip in the place of the input if none
is required. When the value of the expression is true, the guard behaves like the input or skip,
otherwise it behaves like stop and does not proceed. Conceptually, the guard expression enables or
disables an alternative.
When an alternation command is performed, it behaves like one of the alternatives that can

proceed. Without any alternatives, it behaves like stop. An alternative that is itself an alternation is
ready when one of its alternatives is ready.

Examples

• The alternation command

alt { left ? v: out ! v | right ? v: out ! v }

merges data from the channel ends left and right onto a a single channel end out. This is
illustrated by the diagram

alt
right

left
out

• Guarding inputs prevents the input and its corresponding action when a Boolean condition is
false; the command

alt { enabl & left ? v: out ! v | enabr & right ? v: out ! v }

includes Boolean guards on each input so that when enabl or enabr are false, a process
outputting to the channel ends left or right (respectively) will be blocked.

• Alternatives in a nested alternation can be included in the parent alternation with the same
eUect:[[

alt { alt c ? v: c ! v }
]]

=
[[
alt { c ? v: c ! v }

]]

75

6.5.2. Conditional

conditional = if { {0 | 〈choice〉 }
| if 〈expression〉 then 〈command〉 else 〈command〉

choice = 〈guarded-choice〉
| 〈conditional〉
| 〈speciVcation〉 : 〈choice〉

guarded-choice = 〈expression〉 : 〈command〉

A conditional command consists of a list of expressions enumerating a set of choices, with a
command associated with of each. When a conditional command is performed, each choice is tested
in sequence and the command behaves like the Vrst choice that evaluates true. Without any choices,
it behaves like skip.

An alternative if-then-else form of the conditional command combines two choices, one of which is
performed when the value of a condition expression is true, and the other when it is false. Let e be
an expression and C and D be commands, then the alternative conditional form is deVned as[[

if e then C else D
]]

=
[[
if { e: C | ~e: D }

]]
Examples

if { i=1: c ! 1 | i=2: c ! 2 | i>2: c ! 13 }

The following equivalences hold:[[
if i=0 then c ! 17 else c ! 19

]]
=
[[
if { i=0: c ! 17 | i~=0: c ! 19 }

]]
[[
if i=0 then c ! 21 else skip

]]
=
[[
if { i=0: c ! 21 }

]]
[[
if i=0 then skip else skip

]]
=
[[
if { }

]]
=
[[
skip

]]
6.5.3. Loop

loop = while 〈expression〉 do 〈command〉

A looping command repetitively evaluates a condition expression and executes a command if the
value of the expression is true. When it is false, it terminates.

Example

The looping command

while true do { in ? v; out ! v }

acts as a buUer for a single value by repeatedly forwarding values from the channel end in to the
channel end out.

76

6.6. Types, names and scope

6.6. Types, names and scope

6.6.1. Types

Primitive types

type = 〈primitive-type〉
primitive-type = var

There is a single primitive variable type in sire. It holds a value that can be changed by input or
assignment and it is speciVed by the keyword var. Variables are interpreted as signed integers and
if no value has been assigned to it then the value is arbitrary (see Appendix A.4 for details of the
representation of values).

Array types

type = 〈array-type〉
array-type = 〈primitive-type〉

| 〈array-type〉 [〈expression〉]

An array variable contains a number of component variables. Let T be a primitive type, then a
1-dimensional array of components of type T is speciVed by the type T [e] where e is an expression
specifying the length of the dimension. Arrays with additional dimensions can be declared by
specifying additional lengths in the type. Let T be a primitive type, then T [e1][e2]· · · [ed] speciVes a
d-dimensional array with e1 × e2 × · · · × ed components of type T .
The components of an array variable are accessed with integer-valued subscripts that can appear

as an element in an expression or on the left hand side of an assignment or input. The element
u[i] selects the ith component of a 1-dimensional array variable with the name u, and the subscript
v[i1][i2]· · · [id] selects the ith1 component of the Vrst dimension and the ith2 component of the second
dimension etc. of a d-dimensional array variable with the name v.

6.6.2. Scope

A name has a context in which it is valid and can be used. This is called the scope. The scope of a
name extends from the point at which it is declared to the end of the block. A block is enclosed by
curly braces { · · · } or a choice or alternative. The scope of a name also extends to any nested blocks.

6.6.3. Declarations

declaration = 〈type〉 {1, 〈name〉 }

A declaration T n declares a variable of type T with the name n. A single declaration can specify
multiple names of a particular type. Let S(x) be a scope in which the name x is free, T be a type and
N1, N2, · · · , Nn be names, then[[

T N1, N2, · · · , Nn : S
]]

=
[[
T N1 : T N2 : · · · : T Nn : S

]]
Examples

var u

var[23] u, v

var[29][31] u, v, w

77

6.6.4. Abbreviations

abbreviation = 〈speciVer〉 〈name〉 is 〈element〉
| val 〈name〉 is 〈expression〉

speciVer = 〈primitive-type〉
| 〈speciVer〉 []
| 〈speciVer〉 [〈expression〉]

element = 〈element〉 [〈expression〉]
| 〈Veld〉
| 〈name〉

An abbreviation can be used to specify new names for variables and values.

Variable abbreviation

A variable abbreviation speciVes the name for an element that can either be a name or subscripted
component of an array. Let T be a type, n be a name, e be an element and S be a scope. Then a
variable abbreviation has the eUect[[

T n is e : S(n)
]]

=
[[
S(e)

]]
The length speciVer for an array dimension can be omitted from an abbreviation to deVne a name of
an array of components of the speciVed type of any length in that dimension. An array abbreviation
is said to be compatible with an array variable if the lengths of all dimensions are equal or the
abbreviation does not specify the length of a particular dimension.

Value abbreviation

A value abbreviation speciVes a name for an expression. Let n be a name, e be an expression and S be
a scope. Then a value abbreviation has the eUect[[

val n is e : S(n)
]]

=
[[
S(e)

]]
The value of the abbreviation must remain constant throughout its use. To ensure this, the abbreviated
expression must not contain any variables that are updated by assignment or input in the scope of
the abbreviation.

Examples

var n is v

val n is (m*x) + c

val n is m

6.6.5. Specifications

speciVcation = 〈declaration〉
| 〈abbreviation〉

command = 〈speciVcation〉 : 〈command〉
alternative = 〈speciVcation〉 : 〈alternative〉

78

6.6. Types, names and scope

A speciVcation introduces a new name into a scope and all names speciVed within a block must be
unique, however, a block can introduce a name that is already in scope. In general, a free variable of
a block is bound to the most recent name that is still in scope.
If S(x) and S(y) are scopes with the same behaviour, but S(x) contains the free variable x wher-

ever S(y) contains the free variable y and vice versa, and N(x) and N(y) are identical speciVcations
except that N(x) speciVes the name x and N(y) speciVes the name y, then[[

N(x) : S(x)
]]

=
[[
N(y) : S(y)

]]
In other words, speciVcations can always be added to produce a block in which the free variables are
distinct from any scope it may be inserted into. This provides a basis for the semantics of substitution
for process deVnitions, server deVnitions and functions, which are all explained in §6.11 [p. 91].

Examples

var v: v := 73

The following equivalences with abbreviations hold:[[
var n is v: n := 37

]]
=
[[
v := 37

]]
[[
var n is v[41]: n := 43

]]
=
[[
v[41] := 43

]]
[[
var[] n is v: n[47] := 53

]]
=
[[
v[47] := 53

]]
6.6.6. Rules

1. Declarations. A speciVcation can only introduce declarations that have a primitive variable
type.

2. Valid abbreviations. The speciVer of the element speciVed in the abbreviation must be compati-
ble with the type of the name. Compatibility requires the primitive types to be the same and,
for array types, each speciVed length must be also be equal in the corresponding dimension
(unspeciVed lengths can match any dimension).

3. Abbreviation subscripts. Any variables used in subscripts of an abbreviated variable cannot be
changed in the scope of the abbreviation.

4. Value abbreviations. The value of an abbreviated variable may be changed but to ensure the
abbreviation always refers to the same array component, then no variable in the subscript
expression of that component can be changed by assignment or input.

5. Array abbreviations. Components of an array must be identiVed by a single name within a
given scope to prevent aliasing. Therefore, components of an array that has one or more
abbreviated components may also be referred to by abbreviations.

79

6.7. Composition

command = { 〈sequence〉 }
| { 〈parallel〉 }

6.7.1. Sequence

sequence = {0 ; 〈command〉 }

A set of commands are composed in sequence with the ‘;’ separator. Execution starts with the
Vrst component command and each subsequent command is executed if and when the preceding
command terminates. The sequence terminates when the last component command terminates.

Example

a := 1; b := 3; c := 5

connect s to t; s ! 7

6.7.2. Parallel

parallel = {0 & 〈parallel-component〉 }
parallel-component = 〈process〉

A parallel command creates new processes that execute in parallel, where a process is another
command. A set of processes are composed in parallel with the ‘&’ separator. It causes the component
processes to be executed simultaneously and it terminates if and only if all of the component processes
have terminated.

Process interfaces

process = 〈interface〉 : 〈command〉
| 〈command〉

interface = interface ({0 , 〈declaration〉 })
type = 〈chanend-type〉

chanend-type = chanend

Processes executing in parallel can communicate via channels and a process can specify a number
of local channel ends to do this. The set of local channel ends belonging to a process constitutes its
interface, which is speciVed before the body of a process.
Let N1, N2, · · · , Nn be names, then

interface (chanend N1, N2, · · · , Nn)

speciVes an interface that declares n channel ends in the scope of the process. No other types may be
declared in a process interface.

Process names

parallel-component = 〈process-label〉 〈process〉
process-label = 〈name〉 is

80

6.7. Composition

Channel connections are established between component processes of a parallel command by
naming the processes. This is done by preVxing a process with a label of the form

[[
〈name〉 is

]]
. The

name of a process acts as a preVx for a compound name for the channels in the interface, where each
one can be selected as a Veld. Let P be a process and N1, N2, · · · , Nn be names, then

p is interface (chanend N1, N2, · · · , Nn): P

is a process with the name p that speciVes an interface with n components. Each component of the
interface can be selected with the Velds p.N1, p.N2, · · · , p.Nn.

A process name is visible to all of the component processes in the parallel command and a process
that is not named and does not engage in any channel communication is said to be anonymous. A
process can make a connection to another parallel process by selecting the channel end name as a
Veld using the process’ name and using it as the target of a connect statement.

Process arrays

Arrays of processes can be constructed provided they have the same interface. Components of a
process array are selected using integer-valued subscripts. Let P1, P2, . . . , Pn be processes with the
same interface, then

p is {P1, P2, · · · , Pn}

declares a process array containing n processes. The component processes are selected with the
subscripts p[0] to p[n− 1]. Process arrays can also be nested to create multidimensional arrays.

Examples

• The parallel command

u := 1 & v := 2 & w := 3

updates the values of the variables u, v and w simultaneously.

• The parallel command

connect u to v & connect s to t

connects the local channel ends u and s simultaneously, which might be necessary to avoid a
connection deadlock.

• The process

p is interface(chanend c): { connect c to t; c ! 7 }

has an interface with one channel end c, which it connects to another channel end t then
outputs the value 7 on it.

• The parallel command

p is interface(chanend c): { connect c to q.c; c ! 11 } &
q is interface(chanend c): { connect c to p.c; c ? v }

is illustrated by the diagram:

p q

11 cc

• Combining two buUer processes in parallel allows two values to be buUered between an
inputting channel s and outputting channel t:

81

p is interface(chanend in, out):
{ connect in to s; connect out to q.in;
while true do { in ? v; out ! v } } &

q is interface(chanend in, out):
{ connect in to p.out; connect out to d;
while true do { in ? v; out ! v } }

This is illustrated by the diagram:

p q

inoutin outs d

• Let P , Q, R and S be processes with the same interface, then the process

p is { P & Q & R }

is a 1D array and the component process R, for example, is selected with the subscript p[2]
and

p is { { P & Q } & { R & S } }

is a 2D array, this time R is selected with the subscript p[1][0] since it is the Vrst component
of the second array.

6.7.3. Rules

6. Process disjointness. Processes in a parallel command must be disjoint and only update disjoint
sets of variables. This is to eliminate the possibility of unwanted race conditions, i.e. in the
absence of alternation (which is explained in the next section), leaving alternation as the only
means of introducing non-determinism.

A variable or component of an array variable can be changed by assignment or input, or read
if it occurs as an operand or in an expression. Disjointness is enforced by permitting read-only
access to variables or components of array variables shared between components of a parallel
command, and exclusive write access when a variable or array variable component appears in at
most one component of a parallel command. With arrays, components of an array variable may
only be changed in parallel if it can be determined at compile time that the array subscripts are
used in a linear combination to select disjoint components of the array.

7. Point-to-point channels. No channel end can be connected to by more than one process. This is
to ensure that no channel can be used for input or output by more than one process.

8. Channel end subscripts. If the target of a connect command is a component of a process array,
the name will contain a subscript and the subscript must only use constants or replicator
indices. This is so that the process to which it belongs can be identiVed at compile time.

9. Nesting. Channel connections can only be established between component processes of a
parallel. Therefore, channel end names can only be used by child processes of the single
parallel command and they cannot be passed to parallel commands nested in a process.

10. Named process arrays. Components of a named array must all present the same interface.

11. Process interfaces. A process interface can only declare channel end components.

82

6.8. Servers

6.8. Servers

A server is a special type of process that consists of special declarations that deVne its behaviour. It
executes in parallel with the processes in its scope, is only active in response to calls and terminates
when control Wow leaves the block in which it is deVned. Client processes of a server make calls that
behave in the same way to a local procedure call.
Servers provide a mechanism for abstraction by building program components that provide a

service or subroutine, and they can be combined into larger server structures to employ parallelism or
distribute storage.

6.8.1. Specification

server = 〈interface〉 : 〈server-speciVcation〉
server-speciVcation = 〈declaration〉

| { {1 : 〈declaration〉 } }

The speciVcation of a server consists of an interface that deVnes means of external interaction
(consisting of calls and channel ends) and set of declarations that deVne its behaviour. These
are initialisation commands that are performed before it responds to anything, responses to each
communication or call and Vnalisation commands that are performed when it terminates.

Interface

declaration = call {1 , 〈name〉 ({0 , 〈formal〉 }) }
abbreviation = call 〈name〉 is 〈name〉

A call declaration

call N (f1, f2, · · · , fn)

speciVes N as a name for a call with the formal parameters f1, f2, · · · , fn. A single call declaration
can specify multiple calls. Let Fk be a sequence of formals f1, f2, · · · , fn where n is an integer
deVned for the sequence.[[

call N1 (F1), N2, (F2), · · · , Nn (Fn)
]]

=[[
call N1 (F1), call N2, (F2), · · · , call Nn (Fn)

]]
Alternation and call guards

declaration = 〈alternation〉
guard = accept 〈name〉 ({0 , 〈formal〉 })

| 〈expression〉 & accept 〈name〉 ({0 , 〈formal〉 })

The main behaviour of a server is deVned by an alternation declaration that speciVes an alternation
command (see §6.5.1 [p. 75] for the deVnition of alternation). This, as well as containing input
alternatives, can contain call alternatives.
An alternative dealing with a call speciVes the formal parameters that must match the list of

formals in the speciVcation in the interface of the corresponding call exactly, including the names,
and a command to be executed when the call is invoked by a client. A call alternative may be guarded
with an expression in the same way as an input can, so that the call is ready only when the guard is
true. The eUect is that the server will not respond to a call while the guard is false.

83

Initialisation and finalisation

declaration = initial 〈command〉
| final 〈command〉

An initialisation declaration speciVes a command to be executed before the alternation. A Vnali-
sation declaration speciVes a command to be executed after the alternation, when the scope of the
server has terminated.

Examples

• The server

interface(call inc(), dec()):
{ initial c := 0:
alt { accept inc(): c := c+1

| accept dec(): c := c-1 } }

provides two calls to increment and decrement a count value that have no parameters, and the
count is initialised to 0.

• The server

interface(call inc(), dec()):
{ initial c := 0:
alt { c < 100 & accept inc(): c := c+1

| c > 0 & accept dec(): c := c-1 } }

is a version of the previous server with guarded calls. When the server is shared by two or
more processes that increment and decrement the count, no process will be able to increment
the count above 100 and no process will be able to decrement the count below 0. If they attempt
to either of these, they will become blocked until the count enters the valid range.

• The server

interface(call read(var v), write(val v)):
var x: alt { accept read(var v): v := x

| accept write(val v): x := v }

acts like a (potentially shared) variable that can be read from and written to.

6.8.2. Declarations

declaration = 〈server-declaration〉
| 〈hiding-declaration〉
| 〈simultaneous-declaration〉

Server declarations

server-declaration = 〈name〉 is 〈server〉
server = 〈server-array〉

server-array = [{1 , 〈server〉 }]

A server declaration

n is S

84

6.8. Servers

declares n as a name for the server S and n acts as a preVx for the compound names of the call and
channel names speciVed in the interface of the server.

Arrays of servers can be constructed provided they have the same interface. Let S1, S2, . . . , Sn be
servers with the same interface, then

s is [S1, S2, · · · , Sn]

declares a server array containing n servers that are selected with the subscripts s[0] to s[n− 1].
Server arrays can also be nested to create multidimensional arrays.

Hiding declarations

hiding-declaration = from { {1 : 〈declaration〉 } } interface 〈name〉

A hiding declaration encloses a set of declarations and speciVes one name declared by these to be
visible to the scope of the declaration. This is used to create minimal interfaces with collections of
servers to perform abstraction.

Simultaneous declarations

simultaneous-declaration = {0 & 〈declaration〉 }

Declarations separated by the symbol ‘&’ occur simultaneously and have the same scope. They are
therefore visible to one another. Simultaneous declarations are used to introduce mutually referential
declarations, such as servers that communicate with each other.

Examples

Let P , Q, R and S be servers, and X(y) be a server X in which y is free.

• If P , Q, R and S have the same interface then the declaration

n is [P, Q, R, S]

declares a 1D array containing four servers and R, for example, is selected with the subscript
n[2]. A 2D array with the same components is declared as

n is [[P, Q], [R, S]]

and this time R is selected with the subscript n[1][0].

• The hiding declaration

from { m is R : n is S(m) } interface n

only introduces the name n to the scope of the declarations, but the name m is visible to the
declaration of n.

• With a simultaneous declaration, the following holds:[[
m is R : n is S(m)

]]
=
[[
n is S(m) & m is R

]]
• The simultaneous declarations

n is S(m) & m is R(n)

introduce names for two servers that communicate with each other.

85

6.8.3. Calls

command = 〈element〉 ({0, 〈actual〉 })

A server call is a command that speciVes the name of the server, name of the call and a list of
actual parameters. The behaviour of a server call is deVned in the following way. Let f1, f2, . . . , fn
be formals, a1, a2, . . . , an be actuals, and C be a command; then

s is interface (call c(f1, f2, · · · , fn)):
alt { accept c(f1, f2, · · · , fn) C }:
s.c (a1, a2, · · · , an)

has the eUect

f1 is a1 : f2 is a2 : . . . : fn is an : C

Examples

• The process

s is interface(call read(var v), write(val v)):
var x: alt { accept read(var v): v := x

| accept write(val v): x := v }:
... s.write(59); ...; s.read(v); ...

uses a server as a variable. At some point it assigns the value 59 to the variable held by the
server, then later reads the value back.

• The processes

s is interface(call inc(), dec()):
{ initial c := 0:
alt { c < 100 & accept inc(): c := c+1

| c > 0 & accept dec(): c := c-1 } }:
{ { ... s.inc(); ... } & { ... s.dec(); ... } }

share a server that provides guarded calls to increment and decrement a count. This could be
used, for example, if there is a producer-consumer relationship to ensure that the producer
process which increments the count never produces more than 100 outstanding items.

6.8.4. Rules

12. Server channels. A server can use channels for communication and these are subject to the
same rules as processes, except that connections can only be established with other servers
with the same scope. Since channel inputs can only appear in the alternatives in an alternation
declaration, output commands can only appear either in the command associated with an
alternative or in the initialisation or Vnalisation commands.

13. Server calls. A server must provide call guards for each of the calls speciVed in its interface.

14. Server interfaces. A server interface can only contain channel end and call speciVer components.

15. Server disjointness. Servers are subject to the same variable- and channel-disjointness rules as
processes (see §6.7.3 [p. 82]). In particular, a server can change a variable or component of an
array by assignment or input if no other server or process in its scope can read or change that
variable, and, a server can read the value from a variable or component of an array only if no
other server or process changes the variable.

16. Named server arrays. Components of a server array must all present the same interface.

86

6.9. Replication

6.9. Replication

command = seq 〈replicator〉 〈command〉
process = par 〈replicator〉 〈process〉

conditional = if 〈replicator〉 〈choice〉
alternation = alt 〈replicator〉 〈alternative〉

server-declaration = 〈name〉 is 〈replicator〉 〈server〉
| 〈name〉 is [〈expression〉] 〈server〉

replicator = [{1 , 〈index-range〉 }]
index-range = 〈name〉 = 〈expression〉 for 〈expression〉

| 〈name〉 = 〈expression〉 for 〈expression〉 step 〈expression〉

Replicators can be used to create a number of similar commands, components of a construct,
processes or servers. A replicator consists of one or more index ranges. An index range declares the
name of an index variable, a base expression, a count expression and, optionally, a step expression.
The base, count and step deVne the range of values that an index variable takes. This name of the
index variable is available to the replicated component and each replicated instance takes a unique
value of the index.

6.9.1. Constructs

LetX be one of if, alt, seq or par; Y (i) be a choice, alternative, command or process corresponding
toX in which i is free; ⊕ be one of the separators ‘|’, ‘;’ or ‘&’ corresponding toX ; and b, c and s be
integer values. Then, the behaviour of a replicated conditional, alternative, sequence or parallel with a
single index range is deVned by the following. If c ≥ 0:[[

X [i=b for c step s] Y (i)
]]

=
[[
X { Y (b) ⊕ Y (b+s) ⊕ · · ·⊕ Y (b+(c−1)s) }

]]
If c = 0:[[

if [i=b for 0 step s] Y (i)
]]

=
[[
stop

]]
[[
alt [i=b for 0 step s] Y (i)

]]
=
[[
stop

]]
[[
seq [i=b for 0 step s] Y (i)

]]
=
[[
skip

]]
[[
par [i=b for 0 step s] Y (i)

]]
=
[[
skip

]]
If c < 0:[[

X [i=b for c step s] Y (i)
]]

=
[[
stop

]]
For an index range without a step expression[[

X [i=b for c] Y (i)
]]

=
[[
X [i=b for c step 1] Y (i)

]]
Let Ik be a index range ik = bk for ck , where ik is a name and bk and ck are integer values deVned
for the index range. Let bi and ci for 1 ≤ i ≤ d be integer values, then the behaviour of replicators
with d index ranges is deVned by[[

X [I1, I2, · · · , Id] Y (i1, i2, · · · , id)
]]

=[[
X [I1] { X [I2] { · · · { X [Id] Y (i1, i2, · · · , id) }}}

]]

87

Examples

• The conditional command with a nested replicated conditional command

if { if [i=0 for N] a[i] ~= b[i]: match := false
| true: match := true }

determines the equality of two arrays a and b of length N.

• The alternation command

alt [i=0 for N] c[i] ? v: out ! v

merges data from N input channels onto a single channel end out.

• The replicated sequence with two index ranges

seq [i=0 for N, j=0 for N-i-1]
if { a[j] > a[j+1]:
{ tmp := a[j];
a[j] := a[j+1];
a[j+1] := tmp } }

implements the bubble sort algorithm over a length N array a.

• The replicated process

p is par [i=0 for 4] interface(chanend in, out):
{ if i=0 then

connect in to s
else
connect in to p[i-1].out;

if i=N-1 then
connect out to d

else
connect out to p[i+1].in;

var v: in ? v; out ! v+1 }

creates a pipeline of processes, through which a value is passed and incremented by each
process. This is illustrated by the diagram, where the subscript and channel end names are
labelled for each component process:

p[0]

in out

p[1]

in out

p[2]

in out

p[3]

in out

6.9.2. Servers

Servers can also be replicated. Let S(i) be a server speciVcation in which i is free; n be a name; and
b, c and s be integer values. Then, the behaviour of a replicated server with a single index range is
deVned by[[

[i = b for c step s] S(i)
]]

=
[[
[S(b), S(b+ s), · · · , S(b+ (c− 1)s)]

]]
[[
[i = b for c] S(i)

]]
=
[[
[i = b for c step 1] S(i)

]]
Let Ik be a index range ik = bk for ck, where ik is a name and bk and ck are integer values. Then,
the behaviour of replicators with d index ranges is deVned by[[

[I1, I2, · · · , Id] N
]]

=
[[
n is [I1] [[I2] [· · · [[Id] N]]]

]]

88

6.9. Replication

When replicated instances of a server do not require their unique indices, then a shorthand form of
the replicator can be used. Let e be an expression, then[[

[e] N
]]

=
[[
[i = 0 for e] N

]]
Example

The process

n is [N] interface(call read(var v), write(val v)):
var x: alt { accept read(var v): v := x

| accept write(val v): x := v }:
... n[i].write(53); ... n[j].read(v); ...

uses an array of servers that act as variables that can be written to and read from. At some point the
client process writes the value 53 to the ith server variable and then later on reads the value stored
by the jth one.

6.9.3. Rules

17. Replicator indices. The value of any replicator index cannot be changed by an assignment or
input.

89

6.10. Expressions and elements

An expression produces a value and is composed of operands and operators. They cannot cause
any side-eUects by changing any external state. An operand is either an element or literal or nested
expression, which is enclosed by parentheses. There are no precedence rules, so nested expressions
must be explicitly bracketed. An operator takes either one or two operands and produces a value. An
element is either a name, subscripted name, Veld, or function call.
A full speciVcation of expressions and elements is given in §A.3 [p. 263].

6.10.1. Valof expressions

valof = valof 〈command〉 result 〈expression〉
| 〈speciVcation〉 : 〈valof〉

expression = (〈valof〉)

A valof expression produces a value from a command. A valof expression valof C result e is
a block and the scope of C extends to the result expression e. It is evaluated by performing the
command C and then evaluating the expression e to produce the result.

Example

The valof expression

valof { var t, x, y: x := a; y := b;
while y ~= 0 do
{ t := y; y := x rem y; x := t } }

result t

produces the greatest common divisor between two numbers a and b using Euclid’s algorithm.

6.10.2. Rules

18. Valof side-eUects. A valof expression cannot cause side-eUects by changing any external state.
It cannot therefore make calls using a free name or assign to a free variable.

90

6.11. Procedural abstraction

6.11. Procedural abstraction

The details of a process, server or expression can be hidden in a component that presents an interface
to allow the behaviour to be considered abstractly. These components are called procedures and
functions.

6.11.1. Procedures

Definition

deVnition = 〈procedure〉
procedure = process 〈name〉 ({0 , 〈formal〉 }) is 〈process〉

| server 〈name〉 ({0 , 〈formal〉 }) is 〈server〉
formal = 〈speciVer〉 {1 , 〈name〉 }

| val {1 , 〈name〉 }

A procedure speciVes a name, a process or server and a set of formal parameters. Since there is no
global scope in sire the set of formal parameters are the free elements of the process or server.
Let S be a speciVer, then a formal parameter of the form S n speciVes a name n with type given

by S. A single formal can also specify multiple names. Let S be a speciVer and N1, N2, · · · , Nn be
names, then

S N1, N2, · · · , Nn = S N1, S N2, · · · , S Nn

S may specify a variable or array variable of a primitive or channel end type, or a compound channel
end or array of compound channel ends. For value speciVcations

val N1, N2, · · · , Nn = val N1, val N2, · · · , val Nn.

LetX be one of process or server, Y be a process or server corresponding toX and f1, f2, · · · , fn
be formal parameters. Then, the deVnition

X N (f1, f2, · · · , fn) is Y
deVnes the name N to be a procedure that behaves like Y . If fi is an array type, it must specify the
length of each dimension with an expression that consists of only of constant values or variables
speciVed by other the other formals f1, f2, · · · , fi−1, fi+1, · · · , fn.

Examples

• The procedure

process Buffer(chanend cin, cout) is
interface(chanend in, out):
{ connect in to cin; connect out to cout;
while true do { in ? v; out ! v } }

deVnes a buUer process with channel end parameters corresponding to the input and output
processes it connects to.

• The procedure

server Var() is
interface(call read(var v), write(val v)):

var x: alt { accept read(var v): v := x
| accept write(val v): x := v }:

deVnes a server that behaves like a variable.

91

Channel end and server call parameters for procedures

primitive-type = 〈process-type〉
| 〈server-type〉

process-type = process 〈name〉
| process 〈interface〉

server-type = server 〈name〉
| server 〈interface〉

A procedure can specify parameters for channel ends and server calls. These may be speciVed
directly or with a compound name from a process or server reference with the keywords process
or server respectively, its interface and a name. The interface can either be speciVed explicitly by
listing the components, or implicitly by giving the name of a procedure that deVnes a process or
server with the interface.

Examples

• The procedure

process Producer(process Buffer b) is
interface (chanend c):

{ connect c to b.cin; ... c ! v; ... }

has a procedure parameter of type Buffer (deVned above) with the name b. This name is used
to select components from the interface of Buffer.

• The procedure

process P(server Var v) is
... v.write(101); ...

has a server array parameter of the type Var (deVned above) with the name v, allowing the
process to read and write to each component server. Alternatively, it could be written by
specifying the interface explicitly:

process P(server interface(call read(var v), write(val v)) v) is
... v.write(101); ...

Passing procedures as parameters

formal = 〈call-type〉 {1 , 〈name〉 ({0 , 〈formal〉 }) }
abbreviation = 〈call-type〉 〈name〉 ({0 , 〈formal〉 }) is 〈name〉

call-type = process

function

A procedure or server call can specify procedures as parameters. This is so that diUerent imple-
mentations of a procedure with the same formals can be supplied to a procedure instance or server
call. With a procedure parameter to a server call, the supplied procedure is executed remotely.
A formal parameter of the form

process N (f1, f2, · · · , fn)

speciVes N as the name for a procedure parameter. A single procedure can specify multiple calls. Let
Fk be a sequence of formals f1, f2, · · · , fn where n is an integer deVned for the sequence.

92

6.11. Procedural abstraction

[[
process N1 (F1), N2, (F2), · · · , Nn (Fn)

]]
=[[

process N1 (F1), process N2, (F2), · · · , process Nn (Fn)
]]

Example

The procedure

process P(process sort(var[len] data, val len)) is
... sort(values, 997); ...

has a parameter specifying a procedure that implements a sorting algorithm.

6.11.2. Instances

process = 〈instance〉
server = 〈instance〉

command = 〈instance〉
instance = 〈name〉 ({0 , 〈actual〉 })
actual = 〈element〉

| 〈expression〉

An instance of a procedure is created by specifying its name and a list of actual parameters. When
an instance of the procedure is created, each formal serves as the left hand side of an abbreviation of
an actual parameter, a, that is supplied to the instance. This provides a binding of each free variable
to the scope in which it is instantiated. Each actual is an element or expression with a compatible
type with the formal parameter.
The scoping rules mean that an instance of a process type can be substituted in-place for the

process it names by inserting abbreviations of each formal with the actual parameter. This is deVned
in the following way. Let X be one of process or server, Y be a process or server corresponding
toX , f1, f2, · · · , fn be formals, a1, a2, · · · , an be actuals. Then, ifX is a program in which no name
is speciVed more than once and it contains the deVnition

X N (f1, f2, · · · , fn) is Y

then, within its scope

N (a1, a2, . . . , an) = f1 is a1 : f2 is a2 : . . . : fn is an : P

provided each abbreviation is valid. This allows procedures to be compiled either as a closed
subroutine or by substituting the body of the deVnition directly with the instance.

Examples

• The parallel processes

b1 is Buffer(in, b.in) & b2 is Buffer(b1.out, out)

are named instance of the buUer procedure that was deVned in the previous section. The
procedure Buffer can be substituted directly into this to obtain

chanend out is b2.in:
p is interface(chanend in, out):
{ connect in to s; connect out to q.in;
while true do { in ? v; out ! v } } &

chanend in is b1.out:

93

q is interface(chanend in, out):
{ connect in to p.out; connect out to d;
while true do { in ? v; out ! v } }

where channel end abbreviations are inserted where the name of the actual diUers from that of
the formal.

• In the following, instances of Producer and Consumer processes are provided with calls from
a server to insert and remove items from a shared data structure:

process Producer(call insert(val x)) is { ... insert(x); ... }:
process Consumer(call remove(var x)) is { ... remove(x); ... }:
s is interface(call insert(var v), remove(val v)):
... :

{ Producer(s.insert) & Consumer(s.remove) }

The deVnitions of the processes can be substituted in this to obtain the equivalent process

s is interface(call insert(val x), remove(var x)):
... :

{ call insert is s.insert: { ... insert(x); ... }
& call remove is s.remove: { ... remove(x); ... } }

where abbreviations are added for the call parameters where the name of the actual diUers
from that of the formal.

6.11.3. Hiding definitions

deVnition = server 〈name〉 ({0, 〈formal〉 }) inherits 〈hiding-declaration〉

A diUerent way to deVne a server is to inherit an interface from a server in a set of declarations.
This can be used to combine a number of servers into a single reusable module, exposing a single
server declaration as an interface.
Let i1, i2, · · · , im be speciVers for components of an interface, then the deVnition

server N(f1, f2, · · · , fn) inherits
from
...
s is interface (i1, i2, · · · , im) to D
...
interface s

deVnes N as the name of a server type who inherits the interface from the server with name s in the
hiding declaration. Let X be a program in form where no name is speciVed more than once, then if
X contains the above deVnition, in the scope of N[[

x is N(a1, a2, · · · , an) : S
]]

=[[
f1 is a1 : f2 is a2 : . . . : fn is an :
s is interface(i1, i2, · · · , in): D : · · · : S

]]
where S is the scope of the declaration.

Example

The server deVnition

94

6.11. Procedural abstraction

server Array() inherits
from
m is [N] Var():
n is interface(call read(val i, var v), write(val i, val v)):
alt { accept read(val i, var v): m[i].read(v)

| accept write(val i, val v): m[i].write(v) }:
interface n

deVnes a collection of servers consisting of an array of N Var servers that provide calls to read and
write a value and a single server that provides access. An instance of the server Array

x is Array()

can be substituted for the deVnition to obtain

m is [N] Var():
n is interface(call read(val i, var v), write(val i, val v)):
alt { accept read(val i, var v): m[i].read(v)

| accept write(val i, val v): m[i].write(v) }:
server x is n

6.11.4. Functions

Definitions and instances

deVnition = function 〈name〉 ({0, 〈formal〉 }) is 〈valof〉
expression = 〈instance〉

A valof expression can be reused by deVning a function. Each formal parameter of a function must
be a value abbreviation and functions cannot contain calls to processes. The deVnition

function N (f1, f2, · · · , fn) is valof C result e

deVnes N as the name of a function with the valof expression valof C result e.
Let X be a program in a form where no name is speciVed more than once, then if X contains the

above function deVnition, in the scope of N[[
N (a0, a1, · · · , an)

]]
=[[

(valof f0 is a0 : f1 is a1 : · · · : fn is an : C result e)
]]

provided each abbreviation is valid. This allows functions to be compiled either as a closed subroutine
or by substitution.

Functions as parameters

call-type = function

Functions can be passed as parameters in the same way as procedures.

Examples

• The function

95

function gcd(val a, val b) is
valof { var t, x, y: x := a; y := b;

while y ~= 0 do
{ t := y; y := x rem y; x := t } }

result t

deVnes a valof expression to produce the greatest common divisor between two numbers a
and b.

• The assignment

divisor := gcd(243, 346)

assigns the value produced of the function gcd to the variable divisor, which is 1. The
function can be substituted directly to obtain

divisor := (val a is 243: val b is 346:
valof { var t, x, y: x := a; y := b;

while y ~= 0 do
{ t := y; y := x rem y; x := t } }

result t)

6.11.5. Rules

19. Parameters. The rules for procedures, hiding deVnitions and functions follow those for abbrevi-
ations (see §6.6.6 [p. 79]). The following two rules further deVne compatibility for interface,
call and procedure types.

20. Matching interface parameters. A compound name that references a single process or server
can only be supplied as an actual parameter if it is compatible. This requires the interface to be
the same as the one speciVed by the formal parameter.

21. Matching call and procedure parameters. A call or procedure name can only be supplied as an
actual parameter if it is compatible. This requires (1) the type of the formal parameter are the
same and (2) each of the types of the formals in the deVnition of the call or procedure are the
same as the formals speciVed in the parameter (which are speciVed in braces).

22. Array parameters. Each array parameter of a process or server type must specify its length by
an expression that can contain only constant values or the names of other value parameters.

23. Recursion. Recursive procedures or functions are not permitted.

96

6.12. Program

6.12. Program

program = 〈program-speciVcation〉 : 〈program〉
| 〈sequence〉

program-speciVcation = 〈speciVcation〉
| 〈deVnition〉

deVnition = 〈simultaneous-deVnition〉
simultaneous-deVnition = {0 & 〈deVnition〉 }

A program is a single command sequence, or process, with a speciVcation that can contain
deVnitions of process types, server types and functions.

Simultaneous definitions

DeVnitions separated by the symbol & occur simultaneously and share the same scope; they are
therefore visible to one another. Simultaneous deVnitions are used to introduce mutually referential
deVnitions, such as processes or servers that communicate with each other.

Example

The program

val N is 4:
process Node(val i, process Source s, Sink d, Node[N] p) is ... &
process Source(process Node b) is ... &
process Sink(process Node e) is ... &
{ s is Source(p) & d is Sink(p) &
p is par [i=0 for N] Node(i, s, t) }

consists of a collection of processes organised in a pipeline. The procedures Node, Source and Sink
are introduced simultaneously since they communicate with each other. This is illustrated by the
diagram

Node

p[0]

Node

p[1]

Node

p[2]

Node

p[3]

Source Sink

s d

6.12.1. Rules

24. No global scope. A program speciVcation can only contain deVnitions and abbreviations.

97

6.13. Discussion

The design of sire draws inspiration from a number of diUerent areas and the following sections
explain these relationships in more detail. The diUerences are summarised in the Vnal section.

6.13.1. Occam

Sire is based on a subset of occam that includes elements of the syntax and their semantics. Those
components of this subset, which were present in the original version of the language [INM84], are:

• the primitive processes assignment, input, output, skip and stop;

• the constructs sequence, parallel, conditional, alternation and loop;

• the replicated forms of sequence, parallel, conditional and alternation;

• the disjointness rules for parallel processes;

• declarations, abbreviations and the scoping rules;

• procedures and their substitution semantics.

Additionally, several components from occam 2 [INM88b] are used. These do not introduce any new
concepts into the language, but they provide more convenient and expressive notations. These are:

• valof processes and functions;

• multidimensional arrays.

Another version of occam known as occam 3 [Bar92] was proposed as a successor to occam 2 but
it was never implemented. It was inWuential in the design of occam 2.1 [SGS95] but several of its
main features were not included. These features provided ways to structure programs and develop
abstractions, and they have provided inspiration for some of the key concepts in sire. In particular:

• remote call channels provide procedure-call semantics for channel communication between
processes and a mechanism for many-to-one communication patterns;

• resource and server declarations provide a way to formulate the behaviour of a program compo-
nent that is used as a subroutine into a declaration consisting of an alternative construct;

• interfaces provide a way of hiding declarations from a scope (although they are diUerent from
the interface concept in sire);

• modules allow a sequence of declarations to be encapsulated with a single name;

• libraries provide a way of encapsulating deVnitions and data types with a single name and the
ability to make a subset of these visible.

The core aspects of the server proposal in sire are based on the combination of remote call channels,
server declarations, interfaces and modules. The proposal makes syntactic and behavioural changes
to these, but diUers principally by the way in which the concept of a server is integrated into the
language. In sire a server is a primitive mechanism that provides the sole means of dealing with
communication abstractions.
A Vnal important point is that a key concern in the design of the sire language is that it can be

implemented eXciently on a highly-parallel distributed-memory system. This is demonstrated by the
description of the compilation process in Chapter 8 and the empirical evaluation in Chapter 10. Since
occam 3 was never implemented, it is not known whether that proposal, as it stands, also has this
capability.

98

6.13. Discussion

6.13.2. Communicating sequential processes

The original proposal for occam [May83] was based on early work with CSP [Hoa78] as a pragmatic
embodiment of its principles in a practical programming language. Some elements of CSP were not
included, such as recursion and guarded outputs, due to the complexity arising from their distributed
implementation; others were changed and this experience inWuenced later versions of CSP.

Process naming

Processes in the original CSP were named and they communicated by specifying the name in an
input or output. This makes it diXcult to create abstractions since names cannot be hidden. Occam
developed the concept of named communication channels that provide a single logical address that can
be inherited, thereby removing the need for naming processes. The eUect of this is that programs can
be expressed as hierarchical collections of processes where the behaviour of component sub-processes
can be hidden behind a minimal interface consisting solely of sets of channels. Named channels was
incorporated into the later ‘book’ version of CSP (see [Hoa85, Ch. 7] for a discussion), however, they
pose the following problems both for the programmer and for a distributed implementation.

• For the programmer, expressing process structures typically involves using arrays of named
channels and selecting components with subscripts. Even for relatively simple structures such
as trees and hypercubes, the subscripts can become complicated and bear little relation to the
structure they represent.

• The compiler is responsible for generating code that can establish connections and, with named
channels, it must do this by resolving the locations of each channel end point. For Vxed process
structures, this can be done by statically determining the program mapping and generating the
corresponding connections in the executable program. However, it is diXcult to produce an
executable version of the program with this approach that does not include binary images for
every core; for large numbers of processors, the generated binaries can grow very large.

For these reasons, sire does not use named communication channels, and instead uses a mechanism
similar to the original version of CSP with named processes. The problems associated with naming
and abstraction are instead solved by using servers.

Subordination

CSP includes the concept of subordination where the actions of a process are determined completely
by another process [Hoa78], [Hoa85, Ch. 4].3 This is analogous to the concept of a subroutine
and is intended to be used as a means of structuring and representing data. Communication with
a subordinate process follows procedure call semantics. The user process outputs one or more
arguments and receives one or more results. The behaviour of the subordinate is to repetitively wait
for input on one more channels and service each one according to the call. It terminates when the
user does.
This was clearly the inspiration for remote call channels, servers and hiding declarations in the

proposal for occam 3. It is also underpins the server proposal in sire.

6.13.3. Other influences

There are several other key inWuences in the design of sire.

• Remote procedure calls. The concept of remote procedure calls stems from programming
networks of computers with distributed storage and is now widely employed in distributed

3The concept of shared resources and abstraction in parallel programming languages was introduced in Hoare’s earlier
work in 1971 [Hoa71].

99

systems [BN84] and programming languages. The Vrst, Distributed Processes [Han78], provided
inspiration for later languages such as Ada [Ame83] that combined remote procedure calls
with CSP-style alternative selection.

• Object orientation. Servers correspond directly to the concepts of a class and object in the
paradigm of object-orientated programming, where a server deVnition relates to a class, a server
instance relates to an object, and the set of calls relate to public methods that operate on state
hidden in the object.

• Simultaneous declarations. BCPL [Ric67, RWS79] was a strong inWuence on the original design
for occam and its ideas remain as relevant as ever. In particular, its notation for introducing
declarations simultaneously to express of mutually recursive procedures was the basis for
simultaneous deVnitions and declarations for mutually referential collections of processes.

6.13.4. The differentiating aspects of sire

The following points enumerate the main diUerentiating aspects of sire compared to other approaches.

• No named communication channels. There are no named communication channels and channels
are only established between named components of a parallel command. This precludes
channels from making hierarchical connections between parent processes and nested children.

• Process interfaces. A process speciVes an interface consisting of a number of channel ends.
These are the only means of communicating with other processes. The name of a process is a
preVx for the compound names for each component of the interface; these are selected as Velds
and can be passed as parameters.

• Connect commands. A channel is connected using a connect command. It speciVes a local
channel end from a process’ own interface and the target remote channel end. Remote channel
ends are selected from the name of the target process.

• Instances of processes. A subtle diUerence in terminology is used to refer to the use of procedure
calls: they are instanced rather than called. This is due to the natural substitution semantics
of procedure as a named process or server. However, call terminology is still used to refer
to interaction with servers since this is the intuition for the operation of a server call, even
though the semantics are described with substitution.

• Servers. A server is a type of process that is active only in response and only for the duration
of the processes in its scope. In particular, servers can specify channel ends and calls in their
interface and are the only means for dealing with sharing and abstraction communication
between processes.

• Hiding declarations. A hiding declaration is used to make one of a collection of server declara-
tions visible to a scope, hiding all of the others. An inheriting server deVnition has the same
eUect, but deVnes a new name that can be declared independently.

• Simultaneous deVnitions and declarations are used to introduce mutually referential entities.

• Multiple index ranges. Replicators can specify multiple index ranges. These are used to introduce
multidimensional arrays of processes and servers.

• No global scope. There are no global variables in the program scope since execution is distributed.
However, a server can be used to provide global state.

100

CHAPTER 7.

SIRE PROGRAMMING STRUCTURES

programs

sire

compilation

model

UPA

This chapter demonstrates how the primitive features of sire can be used to express simple and
reusable programming structures for many types of programs. These structures are divided into
process structures, which are regular message-passing topologies and server structures, which are the
diUerent ways in which servers can be used and combined. The last section provides some general
discussion.

7.1. Process structures

Simple regular process structures underpin a huge variety of parallel algorithms and it is important
that these can be expressed concisely. The examples in this section are based on pipeline, grid, tree
and hypercube process structures (see §4.1.4 [p. 44]) and each one is explained in terms of a simple
parallel algorithm, whose operation is largely determined by the pattern of communication in the
process structure itself. Particular attention is paid to the way in which channel connections are
established to form the structures, since sire is unconventional in this respect.
To simplify the presentation of each example, only problems sizes of N = 2i for i > 0 are

considered with each process storing only one element of the input; the granularity can be increased
by refactoring to store additional elements in each process.

7.1.1. Pipeline: the Sieve of Eratosthenes

Perhaps the most simple process structure is a pipeline (or 1D array). Typically, this structure operates
in a systolic manner where data are streamed in through the component processes, each of which
iteratively computes and communicates.

A simple parallel algorithm based on a pipeline is a parallel version of the Sieve of Eratosthenes that
generates prime numbers. The following example is based on one by Hoare in [Hoa78]. In this, one
process generates a stream of numbers, which are directed through a pipeline of processes where
each one Vlters out numbers that are a multiple of a particular prime. A Vnal process consumes the
prime numbers output from the pipeline. The input sequence starts at 2, then 3 and subsequent odd
numbers. The Vrst number that each process receives is the prime that it uses to Vlter.

Component processes

Process 7.1 shows the deVnition of the Node process. It speciVes an interface containing two channel
ends, one for input and the other for output, and references to the Master process and the array of
Node processes (of which it is itself a part). The input channel end is connected to the preceding
pipeline node, except for the Vrst Node where it is connected to the output channel end of the master.
This case is identiVed with the parameter i, corresponding to the Node’s position. The output channel
end is connected in a similar way, with the last node connected to the master. The remaining Nodes
make their connections in parallel so that Node i does not need to wait for Node i − 1 to connect
channel in and the total time to establish connections is not related to the size of the pipeline. When
the channel connections have been established, each Node waits to receive a prime number and then

101

Chapter 7. Sire programming structures

p[0]
m = 2

p[1]
m = 3

p[2]
m = 5

p[3]
m =?

s t13 11 7

Figure 7.1.: A pipeline process structure that implements the Sieve of Eratosthenes. It consists of Source
and Sink processes, and a replicated Node process, which are listed in Processes 7.2, 7.3 and 7.1
respectively. The labels show the values communicated and their direction of transmission at a
particular point of execution.

repetitively receives a value and forwards it only if it is not divisible by the prime.1

The process Source in Process 7.2 generates a sequence of numbers. The process Sink in
Process 7.3, with a single channel end, consumes the primes output from the pipeline and stores them
in an array.

The program

The following is the complete process structure with 4 nodes to generate primes up to 16.2

val N is 16:
val SQRTN is 4:
process Node(val i, process Node[SQRTN] p, Source s, Sink t) is ... &
process Source(chanend in) is ... &
process Sink(chanend out) is ... :
{ s is Source(p) & t is Sink(p) &
p is par [i=0 for SQRTN] Node(i, p, s, t) }

Since the Node, Source and Sink processes are mutually referential, their deVnitions are introduced
simultaneously. In the parallel command, the Source and Sink are composed in parallel with an
array of Nodes. All three processes are labelled and their names are exchanged. The output of the
pipeline will be 2, 3, 5, 7, 11 and 13. An illustration of this is given in Figure 7.1, where the source has
just generated the number 13, the Vrst three Nodes have primes and the number 7 is about to pass
through Node 3 and initialise Node 4.

Finally, it should be noted that this process structure will not terminate after the last input has been
generated since the loop in each node has no termination condition. The Node and Sink processes
could be easily modiVed to accept a termination token to halt the loop.

1 The channel connections have been speciVed in such a way that there are no cycles. If this was not the case then the
system would deadlock. Take for example the following process that creates a ring of processes.

p is par [i=1 for N] interface(chanend i, o):
{ connect i to p[i-1].o;
connect o to p[i+1].i }

Since each process Vrst connects its input channel end i to the output channel end o of the preceding process, no
connection will complete and the ring will deadlock. One way to solve this is to execute the connections in parallel.

p is [i=1 for N] interface(chanend i, o):
{ connect i to p[i-1].o &
connect o to p[i+1].i }

Similar care must be taken to ensure that channel communications do not cause cyclic dependencies and deadlock.
2To generate primes up to a number N , it is suXcient only to Vlter up to

√
N since any factor greater than

√
N has a

matching factor less than
√
N .

102

7.1. Process structures

process Node(val i, process Node[SQRTN] p, Source s, Sink t) is
interface(chanend in, out):

{ if
{ i = 0:
{ connect in to s.out;
connect out to p[i+1].in }

| i = N-1:
{ connect in to p[i-1].out;
connect out to t.in }

| i > 0 and i < N-1:
{ connect out to p[i+1].in &
connect in to p[i-1].out } };

var p, m, mp:
% receive a prime
in ? p;
% filter subsequent numbers
mp := p;
while true do
{ in ? m;
while m > mp do mp := mp + p;
if m < mp then out ! m else skip } }

Process 7.1: A pipeline node. This inputs a prime number from the previous node, then Vlters any subsequent
numbers that have the prime as a factor.

process Source(chanend in) is
interface(chanend c):

{ connect c to in;
% generate the first prime, 2
c ! 2;
% then a stream of the next N odd numbers
seq [i=3 for N step 2] c ! i }

Process 7.2: The pipeline source node, which generates a stream of values for the pipeline.

process Sink(chanend out) is
interface(chanend c):

{ connect c to out;
var i:
var[N] primes:
i := 0
% receive and store each prime
while true do
{ c ? primes[i];
i := i + 1 } }

Process 7.3: The pipeline sink node, which receives the Vltered prime values and stores them in an array.

103

Chapter 7. Sire programming structures

7.1.2. Grid: systolic matrix multiplication

In a grid (or 2D array) each process is connected to four others. Matrix multiplication is a natural Vt
for execution in parallel on a grid and a systolic version, where one matrix is distributed on the grid
and the other is streamed over the grid, has a particularly simple implementation.3 The example here
is based on the process structure given for the same problem by Hoare in [Hoa78], which computes
the product B ×A of two square matrices A and B.

Component processes

Process 7.4 gives the deVnition of a Node process. This has parameters for the column and row
coordinates in the grid, references to the 2D grid array (of which it is a part) and references to each
of the 1D border arrays. The initial connection phase is split into two parts, an east-west direction
and a north-south direction. These operate in the same way as the primes pipeline.
When the connections have been established, each Node repetitively receives elements of the

matrix B from its west neighbours and partial sums from the northern ones. It then forwards the
elements of B to the east, computes the product of its element of the matrix A (stored in the variable
Aij) with the element of B, adds this to the partial product and sends it south. A is initialised to the
identity matrix.
The grid border processes North, West, South and East are given in Process 7.5. Each of

these takes an index parameter and reference to the grid and establishes a single connection to a
corresponding grid Node. The North sources input the value 0 (an initial partial sum); the jth West
source inputs elements from the jth column of B (generating the identity matrix); the East sink
processes discard the output; and the South sink processes receive elements of the output such that
result B ×A is distributed over the South processes, each holding a column of the matrix.

The program

The following is a complete process structure that implements parallel matrix multiplication for two
2× 2 matrices.

val N is 3:
process North(val j, process Node[N][N] g) is ... &
process West(val j, process Node[N][N] g) is ... &
process South(val j, process Node[N][N] g) is ... &
process East(val j, process Node[N][N] g) is ... &
process Node(val i, val j, Node[N][N] g,

process North[N] bn, process West[N] bw,
process South[N] bs, process East[N] be) is ... :

{ n is par [i=0 for N] North(i, g) &
w is par [j=0 for N] West(j, g) &
s is par [i=0 for N] South(i, g) &
e is par [j=0 for N] East(j, g) &
g is par [i=0 for N, j=0 for N] Node(i, j, n, s, e, w) }

It consists of four 2-component arrays for each border and an 2 × 2 array of Nodes. The process
deVnitions are again introduced simultaneously since they are mutually referential as they were
in the primes pipeline. An illustration of this process structure is given in Figure 7.2, where the
communication links are annotated with the values being communicated at a point during the
execution of the algorithm.

3Matrix multiplication can also be implemented in a non-systolic manner, for example with Cannon’s algorithm [Can69],
or using a pipeline process structure as is described by Brinch Hansen in [Han95b, Ch. 7].

104

7.1. Process structures

Since the border processes make only a single connection to components of the grid, there are
no cycles in the connection pattern and therefore it is deadlock free. Like the primes pipeline, the
Node, North and East processes do not terminate; termination could be implemented with the West
processes issuing a special token when they have completed inputting their column.

g[0][0]
A0,0

g[1][0]
A0,1

g[0][1]
A1,0

g[1][1]
A1,1

B1,0

B0,1

A0,0B1,0 A1,0B0,0

n[0]

0

n[1]

0

s[0] s[1]

A0,0B0,0 +A1,0B0,1

w[0]

w[1] B1,1

e[0]

e[1]

B0,0

Figure 7.2.: A 2× 2 grid process structure that implements matrix multiplication. It consists of a replicated
Node process (Process 7.4). Four border processes North, West, South and East (Process 7.5),
source and sink data from the grid. Links are labelled with the communicated values at a particular
point of execution to illustrate their combined behaviour.

105

Chapter 7. Sire programming structures

process Node(val i, val j, process Node[N][N] g,
process North[N] bn, process West[N] bw,
process South[N] bs, process East[N] be) is

interface(chanend n, w, s, e):
{ if
{ i = 0:
{ connect w to bw[j];
connect e to g[i+1][j] }

| i = N-1:
{ connect w to g[i-1][j];
connect e to be[j] }

| i > 0 and i < N-1:
{ connect w to g[i-1][j] &
connect e to g[i+1][j] } };

if
{ j = 0:
{ connect n to bn[i];
connect s to g[i][j+1] }

| j = N-1:
{ connect n to g[i][j-1];
connect s to bs[i] }

| j > 0 and j < N-1:
{ connect n to g[i][j-1] &
connect s to g[i][j+1] } };

var Aij, Bi, j;
% initialise the matrix element
if i = j then Aij := 1 else Aij := 0;
% communicate and compute
while true do
{ n ? j;
w ? Bi;
e ! Bi;
s ! Aij*Bi + j } }

Process 7.4: The replicated component of the grid process structure. This stores one element of the matrix
A in the variable Aij. It repetitively receives elements a row of the matrix B from its west
neighbour (Bi) and partial sums from the north. It then forwards the element of B eastwards,
multiplies its element of A with the one from B, and sends this, added to the partial sum, south.

106

7.1. Process structures

process North(val i, process Node[N][N] g) is
interface(chanend c):

{ connect c to g[i][0];
% input partial sums
while true do c ! 0 }

process West(val j, process Node[N][N] g) is
interface(chanend c):

{ connect c to g[0][j];
% input elements from a column of B (the identity)
seq [i=0 for N]
if i = j then c ! 1 else c ! 0 }

process South(val i, process Node[N][N] g) is
interface(chanend c):

{ connect c to g[i][N-1];
% receive elements from the columns of the result
var Bj[N]:
for[k=0 for N] c ? B[k] }

process East(val j, process Node[N][N] g) is
interface(chanend c):

{ connect c to g[N-1][j];
% discard output
var v:
while true do c ? v }

Process 7.5: The border nodes to source and sink data to and from the grid of Nodes that perform the matrix
multiplication.

107

Chapter 7. Sire programming structures

7.1.3. Tree: prefix sum

A binary tree is a natural structure on which to implement a parallel preVx sum, a building block for
many parallel algorithms. This operation takes a sequence of numbers x1, x2, · · · , xn and produces a
new sequence y1, y2, · · · , yn where y1 = x1 and yi = xi + yi−1 for 0 < i ≤ n. The method in the
following example is based on the formulation described by Blelloch in [Ble90].

Component processes

The Branch process in Process 7.7 establishes channel connections in a similar way to the pipeline
and grid examples. However, the channel connections between other Branch processes are embedded
into a 1D array and are selected using more complex subscripts. Connections to the root and leaf
arrays are performed based on the branch index. The Root process in Process 7.6 is connected to the
Vrst branch. Instances of the Leaf process in Process 7.8 are connected to each of the Vnal level of
branch nodes.
A complete binary tree with N = 2i, for i > 0, leaf nodes has N/2 branch nodes connecting

these and N/2− 1 other branch nodes. A Branch node with array index i is connected to a root at
b(i+ 1)/2c+ (i+ 1) mod 2 and children at 2i+ 1 and 2i+ 2 (these are the connection subscripts
in Process 7.7. If the index is greater than N/2 − 1 then its children are Leaf nodes. The Branch
process connects in sequence to the root node and children, then receives a value from the root node
and forwards it to its children.
Initially, each Leaf has a value (its id) and the operation will compute the preVx sums of the

values. The algorithm works by propagating partial sums to the Leaf nodes in a depth-Vrst traversal
of the tree. The result is stored at each of the Leaf nodes.

The program

The following is a complete process structure for a depth-3 binary tree implementing a preVx-sum
operation.

val D is 3:
val N is 1 << D:
process Root(chanend root) is ... &
process Branch(val i, chanend m,

process Branch[N-1] b, process Leaf[N] l) is ... &
process Leaf(val i, process Branch[N-1] b) is ... :
{ r is Root(b[0].root) &
b is par [i=0 for N-1] Branch(i, m.root, b, l) &
l is par [i=0 for N] Leaf(i, b) }

It consists of an array of Branch processes, an array of Leaf processes and a Root process
composed in parallel. An illustration of this process structure is given in Figure 7.3. It shows the
behaviour and state of the algorithm as it enters the right hand side of the tree.

108

7.1. Process structures

process Root(chanend root) is
interface(chanend c):

{ connect c to root;
var v:
root ! 0;
root ? v }

Process 7.6: The tree root node. This inputs the initial partial sum, 0, then receives a value as the propagation
passes from the left hand side of the tree to the right.

process Branch(val i, chanend m,
process Branch[N-1] b, Leaf[N] l) is

interface(chanend root, left, right):
{ if i = 0
then connect root to m
else if i rem 2 = 1
then connect root to b[((i+1)/2)+((i+1) rem 2)].left
else connect root to b[((i+1)/2)+((i+1) rem 2)].right;
if i < N/2 then
{ connect left to b[(2*i)+1].root;
connect right to b[(2*i)+2].root }

else
{ connect left to l[i-(N/2)-1].root;
connect right to l[i-(N/2)-1].root }

var sum, lsum, rsum:
root ? sum; % receive the partial sum
left ! sum; left ? lsum; % propagate sum to left-hand child
right ! lsum; right ? rsum; % propagate sum to right-hand child
root ! rsum % return the new sum

}

Process 7.7: The tree branch node. This propagates a partial sum Vrst to the left hand child, then to the right
hand one, and Vnally back to the root.

process Leaf(val i, process Branch[N-1] b) is
interface(chanend root):

{ if i rem 2 = 1
then connect root to b[N-(i/2)].left
else connect root to b[N-(i/2)].right;
var v, r, psum:
v := i;
root ? psum; % receive the partial sum
r := psum + v; % compute the local result
root ! r % return the updated partial sum

}

Process 7.8: The tree leaf node. This stores a value from the input sequence (in v), it then receives a partial
sum to compute its own result, which is then returned for the remaining right-hand Leaf node.

109

Chapter 7. Sire programming structures

b[0]
6

b[1]
6

b[3]
1

l[0]
0

0

l[1]
1

1

1

b[4]
6

l[2]
2

3

l[3]
3

6

6

6

b[2]

b[5]

l[4]
4

l[5]
5

b[6]

l[6]
6

l[7]
7

6

r

Figure 7.3.: A depth-3 binary tree process structure, consisting of Root, Branch and Leaf processes (Processes
7.6, 7.7 and 7.8 respectively). It implements a preVx-sum operation on the values stored at each
Leaf and operates in a depth-Vrst manner, propagating partial sums from the left hand side to
the right. The labelled communication links show the child-parent communications as the partial
sums enter the right hand side of the tree. The Leaf processes are labelled with the values of their
variable v and Branch processes are labelled with the value of their sum variable.

110

7.1. Process structures

7.1.4. Hypercube: sorting

Hypercubes have a powerful structure that allows all-to-all operations to be completed in n pairwise
exchanges, where the number of nodes N = 2n. This lends them as a structure for a variety of
parallel algorithms, see Ranka and Sahni [RS90], and Foster [Fos95, Ch. 11] for examples.
The example here is a sorting algorithm based on a similar one described by Brinch Hansen

in [Han95b, Ch. 10]. Sorting a sequence of items x1, x2, · · · , xn produces a permutation of the
sequence according to a total ordering of the elements, in this case xi ≤ xi+1.

Component process

Process 7.12 lists a Node process that is replicated to form each node of the hypercube. The main
operation of this is to, in sequence, establish the channel connections, distribute the input array,
perform the sorting operation and then collect the output array. Since sorting is based on permuting
the data, it would be relatively simple to integrate a sorting algorithm into the collection procedure,
however, the sorting operation in this example could be replaced by any other hypercube algorithm
and so it serves as a simple template.

The distribute and collect processes, listed in Process 7.9 treat the hypercube as a hierarchical
structure by assigning each node to a level (which is computed by the level function, taken from
the example in Brinch Hansen’s computational paradigms [Han95b, Ch. 10]). A hypercube has n+ 1
levels such that in 0 dimensions a hypercube consists of a single node at level 0 and in 1 dimension
the 0th dimension is replicated and this is level one. In general, the nodes in the 0 to ith dimensions
are replicated to form the (i+ 2)th level. The nodes belonging to the Vrst three levels of a hypercube
are listed in the following table.

Level Nodes

0 0
1 1
2 2, 3
3 4, 5, 6, 7

Each Node has n channels for each dimension of the hypercube (levels 1 to n) and an additional
channel corresponding to level 0. This channel is used exclusively by Node 0 for external interaction.
The n channels are connected in the sequence of dimensions to the corresponding channel end at the
neighbouring Node in that dimension. This pattern produces a sequence of n pairs of interactions,
which can be seen for n = 2 with the following table.

i i⊕ 1 i⊕ 2

0 1 2
1 0 3
2 3 0
3 2 1

For example, Node 1 connects Vrst to Node 0 in dimension 1 and then Node 3 in dimension 2. These
correspond to the connections made by Node 0 and Node 3. Figure 7.4a illustrates this sequence of
interactions procedure on a cube.

The distribution then proceeds one level at a time, with each Node Vrst waiting to receive a portion
of the input array on the channel in the dimension equal to its level, then distributing half of this in
the channels in higher dimensions. This starts with Node 0 receiving input from the Master process
(listed in Process 7.11). When this is complete, each Node holds a single value from the input array.
Figure 7.4a illustrates the operation of distribute procedure on a cube.

111

Chapter 7. Sire programming structures

The procedure to sort the array is listed in Process 7.10 and proceeds in n phases, following the
same pattern of interactions as the sequence of connections. Each pair with labels a and b where
a < b exchange their values u and v. a keeps v if v < u and b keeps u if u > v. After n exchanges,
the values are sorted according to the labelling of Nodes, with one element per Node.4

When the sorting is completed, the results are collected with the collect procedure listed in
Process 7.9. This operates in the opposite way to the distribute procedure, with each of the ‘leaf’
Nodes sending their results Vrst.

The program

The following is a complete process structure for a 3D hypercube (cube) to that executes the parallel
sorting algorithm.

val D is 3:
val N is 1 << D:
function nbr(val id, val d) is ... :
function level(val id) is ... :
process distribute(val id, chanend[D+1] c, var[n] a, val n) is ... :
process collect(val id, chanend[D+1] c, var[n] a, val n) is
process sort(val id, chanend[D+1] c, var a) is ... :
process Master(process Node n) is ... :
process Node(val id, Node[N] c) is ... :
{ m is Master(n) &
n is par [i=0 for N] Node(i, m, n) }

This structure is illustrated by the diagrams in Figure 7.4.

4For more than one value per Node, the merge sort algorithm could be employed in these exchanges. The pair would Vrst
sort their sequence locally, then exchange the sequences so they have both. One would then merge the two sequences
to obtain a sorted sequence with the lowest values, and the other with the highest [Fos95, §11.4].

112

7.1. Process structures

n[0] n[1]

n[2] n[3]

n[4] n[5]

n[6] n[7]

m

N

N/2

N/4 N/4

N/8 N/8

N/8 N/8

(a) distribution of input

n[0] n[4]

n[2] n[6]

n[1] n[5]

n[3] n[7]

2

2

2

2

1

1

1

1

0

0

0

0

m

(b) the sequence of pairwise interactions

Figure 7.4.: A 3D hypercube (cube) process structure to implement a parallel sort. In (a) the communication
involved in the distribute procedure is indicated (the collect procedure operates in the
opposite way). In (b) the sequence of pairwise interactions used to establish channel connections
and perform the sort are indicated.

113

Chapter 7. Sire programming structures

function level(val id) is
% return a level for a hypercube node
valof
{ var d, dmax, l:
dmax := 0; l := 0;
while dmax < id do
{ dmax := 2*dmax + 1;
l := l + 1 } }

result l

process distribute(val id, chanend[D+1] c, var[n] a, val n) is
{ var lvl, len, base:
lvl := level(id);
% receive 2level(id) elements of ’a’ from the parent
c[lvl] ? len;
seq [i=0 for len] c[lvl] ? a[i]
% redistribute topmost portions of ’a’ to each child
base := len/2;
seq [i=lvl+1 for D-lvl-1]
{ len := len / 2;
c[i] ! len;
seq [j=base for len] c[i] ! a[j];
base := base-len } }

process collect(val id, chanend[D+1] c, var[n] a, val n) is
{ var lvl, len, lenPart:
lvl := level(id);
% receive portions of array from each child
lenPart := 1;
seq [i=D-1 for D-1-lvl step -1]
{ c[i] ? len;
seq [j=len/2 for len] c[i] ? a[j];
lenPart := lenPart * 2 };

% send a complete portion to the parent
c[lvl] ! lenPart;
seq [i=0 for lenPart] c[lvl] ! a[i] }

Process 7.9: Procedures to distribute and collect an array variable, whose length is integral power of two.
These treat the N = 2n node hypercube as a hierarchical structure with n+ 1 levels.

114

7.1. Process structures

function nbr(val id, val d) is
% return the id of a neighbour for a hypercube node in dimension d
valof result id xor (1<<d)

process sort(val id, chanend[D+1] c, var a) is
{ var swp:
% perform D pairwise exchanges
seq [i=0 for D]
if id < nbr(id, i+1)
then
{ c[i] ! a;
c[i] ? swp;
if { swp < a: a := swp } }

else
{ c[i] ? swp;
c[i] ! a;
if { swp > a: a := swp } } }

Process 7.10: The hypercube sorting procedure, which is executed by each Node. It works by making D= logN
pairwise exchanges so that the sequence distributed between them is sorted according to their
IDs.

process Master(process Node n) is
interface(chanend c):

{ connect c to n.c[0];
var a[N];
seq [i=0 for N] c ! N-i-1; % input the array to the hypercube
seq [i=0 for N] c ? a[i] } % output the sorted array

Process 7.11: A master node to source and sink data from the hypercube.

process Node(val id, process Master m, Node[N] n) is
interface(chanend[D+1] c):

{ seq [i=1 for D] connect c[i-1] to n[nbr(id, i)].c;
if { id = 0: connect c[0] to m.c };
var a[N]:
distribute(id, c, a, N);
sort(id, c, a[0]);
collect(id, c, a, N) }

Process 7.12: The hypercube node. The instance of this process with id 0 initialises the input array. This is
then distributed between the other nodes, then the sort is performed and the results collected.

115

Chapter 7. Sire programming structures

7.2. Server structures

Abstractions are essential in managing the complexity of a program and in scalable parallel pro-
gramming, abstractions necessarily involve distributed parallelism. In sire, abstraction of parallel
program components is dealt with using servers. Their key ability is to allow the expression of a
global state that can be shared. This gives rise to a subroutine mechanism where client connections
can be rebound dynamically.
This section explains the ways in which servers can be used to express abstractions to structure

a program. It also explores some of the ways in which the concept of a server is analogous to
conventional language primitives such as variables, arrays and procedure calls.

7.2.1. Single servers

A server process can be used to encapsulate state and make this available to a scope through a set of
calls.

Servers providing remote storage

Consider the server deVnition given below in Process 7.13 that provides remote storage by containing
an array declaration and providing in its interface calls to read and write to particular locations in it.

server Store() is
interface(call read(val i, var v), write(val i, val v)):

{ var[N] a:
alt
{ accept read(val i, var v): v := a[i]
| accept write(val i, val v): a[i] := v } }

Process 7.13: A server that provides access to an array.

In the following, an instance of a Store server is declared with name s.

server Store() is ... :
s is Store(): ... s.write(i, 23); ... s.read(i, v); ...

The server executes in parallel with the scope of the declaration, which makes calls to the server to
read and write from it. This is equivalent to the following use of a array variable with inVx notation:

var[N] a: ... a[i] := 23; ... v := a[i]; ...

Servers providing remote calls

A server also encapsulates behaviours that are invoked with the same semantics as conventional
procedure calls. Based on the substitution semantics of server calls (see §6.8 [p. 83]), the following
local call

process increment(var v) is v := v + 1:
... increment(v) ...

has the same eUect as

116

7.2. Server structures

s is interface(call increment(var v)):
alt { accept increment(var v): v := v + 1 }:

... s.increment(v) ...

However, in the version with the server, the call is executed by a diUerent parallel process, which may
be executing remotely on a diUerent processor. The server notation therefore makes it convenient to
move between local process calls and remote server calls. This makes it easy to modify a program to
oYoad the work in a procedure to another processor, potentially where the data that it operates on is
actually stored, and to employ additional parallelism in the program’s evaluation.

Moving program to servers

Since procedures and functions can be passed as parameters, server calls can be used as a mechanism
to move program components to operate on data locally at the server. This is illustrated with the
modiVed version of Process 7.13 below, which provides an additional call that applies a procedure
parameter to the array.

server Store() is
interface(call read(val i, var v), write(val i, val v),

apply(process f(var[n] a, val n))):
{ var[N] a:
alt
{ accept read(val i, var v): v := a[i]
| accept write(val i, val v): a[i] := v }
| accept apply(process f(var[n] a, val n)): f(a, N) }

Process 7.14: A modiVed version of Process 7.13 that allows the internal array to be modiVed locally.

Servers as data structures

The encapsulation of both state and behaviour in an entity that is available throughout a conventional
variable scope provides a basis for abstraction. This allows servers to be used to implement data
structures.

Process 7.15 shows the deVnition of a server type that implements a stack data structure in which
items are added and removed in a Vrst-in last-out manner by a single client. It maintains an array s
that it uses to store the values and a pointer p that records the index of the last element. Calls are
also provided to query the occupancy of the stack in order that accesses can be made safely.
The following creates an instance of the Stack server type that is used by a single client process.

s is Stack():
{ ... s.full(f); if { ~f: s.push(0) }; ...
... s.empty(e); if { ~e: s.pop(v) }; ... }

7.2.2. Multiple servers

Replicated server declarations create arrays of servers. The following creates an array of N Store
servers.

server Store() is ... :
s is [N] Store(): ... s[i].write(j, 19); ... s[i].read(j, v); ...

117

Chapter 7. Sire programming structures

server Stack() is
interface(call push(val v), pop(var v), full(var b), empty(var b)):

{ var[N] s:
var p:
initial p := 0:
alt
{ accept write(val v):
{ s[p] := v;
count := count + 1 }

| accept read(var v):
{ v := s[p];
count := count - 1 }

| accept full(var b):
b := p+1 = N

| accept empty(var b):
b := p = 0 } }

Process 7.15: A stack server.

The eUect of this is to create a large distributed store. SpeciVc regions of the store are accessed by
subscripting component servers. This again is equivalent to a similar use of conventional array
variables, for example:

var[N][N] s: ... s[i][j] := 19; ... v := s[i][j]; ...

The equivalences between conventional variables and procedures, and the corresponding server
constructs, permit simple refactoring to move from the local (conventional) form to the remote
(server) form. This provides the potential with a small amount of refactoring to distribute state or to
employ parallelism. This idea will be explored further in later examples.

7.2.3. Shared servers

A server can be shared between a number of clients, which can make calls at arbitrary times, but a
server is able only to service the calls in sequence.

A shared buffer

A simple shared data structure is a bounded buUer in which the order that items are read from it is
the same as they are written. Process 7.16 shows the deVnition of a Buffer server, which is based on
the buUer example in [INM88a, Ch. 1]. It maintains an array b with pointers inp and outp that are
used to allocate storage at the beginning and end of the buUer in a circular manner.

118

7.2. Server structures

server Buffer() is
interface(call write(val v), read(var v)):

{ var[N] b:
var inp, outp, count:
initial { inp := 0; outp := 0; count := 0 }:
alt
{ count+1 < N & accept write(val v):
{ b[inp] := v;
inp := (inp + 1) rem N;
count := count + 1 }

| count > 0 & accept read(var v):
{ v := b[outp];
outp := (outp+1) rem N;
count := count - 1 } } }

Process 7.16: A buUer server.

The buUer server example also illustrates the use of guarded call alternatives. If the buUer is read
when it is empty, then the call will block until something is written to it. Conversely, when the buUer
is full, a write will block until it is read. This allows the buUer to be safely shared between one or
more of parallel processes, for example, by a pair of producer and consumer processes:

server Buffer() is ... :
process Producer(server Buffer b) is
while true do b.write(0):

process Consumer(server Buffer b) is
var v: while true do b.read(v):

b is Buffer(): { Producer(b) & Consumer(b) }

The following diagram illustrates this process structure:

bProducer Consumerwrite(· · ·) read(· · ·)

A task farm

A task farm (see §3.1.3 [p. 23]) can be expressed concisely using a single shared server that acts a the
farmer and a replicated worker process. Processes 7.17 and 7.18 give the deVnitions these respectively.
The Farmer maintains a list of outstanding work, represented by an integer value between 0 and

N − 1, and an array of results. Request calls do not block, but when there is no work remaining a
special value NONE is sent to indicate this. Return calls also do not block and the supplied result is
written to the array. The Worker process repetitively requests work from the farmer until there is no
work remaining. For each piece of work, it performs a computation with a call to a compute process,
and returns the result.
The following is a complete task farm with an array of Worker processes that share access to a
Farmer server.

val NONE is 0:
server Farmer() is ... :
process Worker(server Farmer f) is ... :
f is Farmer():
par [i=0 for N] Worker(f)

119

Chapter 7. Sire programming structures

server Farmer() is
interface(call request(var w), result(val w, val r)):

{ var results[N]:
var work:
initial work := 0
alt
{ % provide a worker with work if any remains or NONE if not
accept request(var w):
if work < N
then
{ w := work;
work := work + 1 }

else w := NONE
% accept a result from a worker

| accept result(val w, val r):
results[w] := r } }

Process 7.17: A task farm farmer server.

process Worker(server Farmer f) is
{ var running: running := true;
while running do
{ var work, result:
% request some work
f.request(work);
% if there is none then terminate
if work = NONE
then running := false
else
{ % otherwise, perform the computation and return the result
compute(work, result);
f.result(work, result) } } }

Process 7.18: A task farm worker process.

120

7.2. Server structures

7.2.4. Data abstractions

A central challenge associated with programming distributed memory parallel computers is that the
working dataset of a particular problem will generally be larger than the capacity of any one memory.
Therefore, data has to be distributed between processes, and as a computation progresses, processes
have to access components of the data stored in remote memories.
When the dataset of a problem and its associated access patterns can be decomposed in a regular

way, it can be expressed as a process structure with message-passing communication, such as the
examples described in §3.1.3 [p. 22] and the examples earlier in this chapter in §7.1 [p. 101]. However,
when a problem cannot, it is awkward to express it in terms of a Vxed process structure. In these
cases, collections of servers can be used to build distributed representations of data that can be
accessed by collections of client processes.

The following examples demonstrate some simple ways this can be done. The examples also serve
to illustrate the kinds of techniques employed to manage distributed data.

A large random access memory

A desirable quality of a distributed-memory architecture is to build larger random-access memories.
This establishes a base-case for their use, providing the ability to run large memory sequential
programs. The following example explores how a large random-access memory structure can be
expressed using the features provided by sire (in Chapter 10, the eXciency with with the UPA can
execute this structure is investigated).

A distributed memory can be expressed with two types of server, one that is replicated to provide
the distributed storage and one that provides access by dealing with the structure of the storage array.
Process 7.19 lists the deVnition for a server that implements a distributed random-access memory. In
this, the Store server provides access to remote storage and the Access server holds a reference to
an array of Store servers and provides calls to read and write locations over the array. Each access
is converted into an integer server index (baddr/Sc) and an index within the storage of that server
(addr mod S). For simplicity, accesses outside of the valid index range 0 to N(S− 1) are ignored.
The RAM server deVnition combines the Store and Access servers so that a single declaration can be
introduced that encapsulates the behaviour of the entire server structure. Since client processes will
only interact with the Access server, the array of Store servers is hidden using a hiding deVnition,
making only the interface m visible.

The following is an outline of a program that uses this composite server structure. With N storage
servers and S words storage per server, it provides N× S words of storage to a single client process.

val S is 1024:
val N is 10:
server Store() is ... :
server Access(server Store[N] s) is ... :
server RAM() is ... :
m is RAM():
{ ... m.write(addr, 42); ... m.read(addr, v); ... }

Figure 7.5 shows the process diagram for this program, illustrating the internal structure of the
RAM server type.

121

Chapter 7. Sire programming structures

server Store() is
interface(call read(val i, var v), write(val i, val v)):

{ var[S] a:
alt
{ accept read(val i, var v):

v := a[i]
| accept write(val i, val v):

a[i] := v } }

server Access(server Store[N] s) is
interface(call read(val addr, var v), write(val addr, val v)):
alt
{ accept read(val addr, var v):

s[addr/N].read(addr rem S, v)
| accept write(val addr, val v):

s[addr/N].write(addr rem S, v) }

server RAM() inherits
from
{ s is [N] Store():
m is Access(s) }

interface m

Process 7.19: A server providing a distributed random access memory.

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9]

a Access server

Store
servers

client process

Instance of the RAM server

Figure 7.5.: A random access memory server structure (whose components are listed in Process 7.19) that
executes in parallel with a single client process. The client performs reads and writes to arbitrary
addresses via an Access server that dispatches the accesses to particular Store servers.

122

7.2. Server structures

Caching accesses

A simple extension to the RAM server is to introduce caching to improve performance by reducing the
number of accesses that are potentially dispatched to remote Store servers.
Process 7.20 extends the Access with a simple write-through caching scheme where every write

is written to a random location in the cache and also to a Store server. A read causes the cache to
be checked Vrst with a linear search. The value is returned and the call completed if it is held in
the cache, otherwise it is fetched from a server. Entries are inserted into the cache with a separate
function h that computes the hash of a value.

server Access(server Store[N] s) is
interface(call read(val i, var v), write(val i, val v)):

{ var[M] cache, indices:
var k, hit:
initial seq [i=0 for M] indices[0] := 0
alt
{ accept read(val i, var v):
{ hit := false;
if [j=0 for M]
{ i = indices[j]:
{ v := cache[j];
hit := true } };

if { ~hit:
{ k := h(i);
s[i/N].read(i rem S, cache[k]);
indices[k] := i;
v := cache[k] } } }

| accept write(val i, val v):
{ k := h(i);
cache[k] := v;
indices[k] := i;
s[i/N].write(i rem S, v) } } }

Process 7.20: A modiVed version of the RAM Access server listed in Process 7.19 to implement a simple
write-through caching scheme.

A large shared random access memory

It is natural to extend the distributed random access memory to support concurrent access for a set of
parallel processes. This corresponds closely to emulating a PRAM and there are many techniques to
do this in an eXcient way (the PRAMmodel was explained in §2.2.2 [p. 15]). A parallel random-access
structure is important to consider since it provides the natural basis on which to implement large
distributed data structures, where read and write operations are generalised to arbitrary abstract
operations.
The most simple variant of a PRAM is exclusive-read, exclusive write (EREW) where there are no

access collisions. To ensure accesses are evenly distributed and there is not excessive contention at
any particular processor, it is necessary to evenly distribute the logical address space over the set of
physical address spaces provided by the processors that implement the memory. Each logical address
a ∈ {1, 2 · · · ,m} is mapped to a processor p ∈ {1, 2, · · · , n} where m � n, p = h(x) and h is a
suitable hash function. The eUect is that the logical address space is partitioned into a number of

123

Chapter 7. Sire programming structures

disjoint components that are mapped to processors.5

The structure of an EREW-PRAM follows that of the RAM in the previous section; Process 7.21
lists the deVnitions of the server and its components. The Store server uses an additional hash table
server Table to store addresses assigned to it6 and the Access server uses a hash function h to select
servers to dispatch read and write requests to. Therefore, all instances of the Access server compute
the same address mappings.
Process 7.21 shows the deVnition of the complete server structure with the array of N hidden
Store servers and array of M Access servers made visible through the ParallelRAM server type.
The following program shows an instance of the ParallelRAM server type being used by a collection
of parallel clients.

val S is 1024:
val N is 10:
val CLIENTS is 4:
val M is CLIENTS:
function h(val v) is ... :
server Table() is ... :
server Store() is ... :
server Access(Store[N] s) is ... :
server ParallelRAM() inherits ... :
m is ParallelRAM():
par [i=0 for CLIENTS]
{ ... m[i].write(addr, 42); ... m[i].read(addr, v); ... }

In the program, each client performs reads and writes through a particular Access server and the
number of Access servers are matched to the number of clients. If the number of clients changes
between diUerent phases of execution, then the number of Access servers would be determined by
the maximum number of client processes, and in phases with fewer clients, some Access servers
would remain unused. Figure 7.6 shows the process diagram of this program, illustrating the internal
structure of the ParallelRAM server, marking all of the potential client-server call interactions.

5A well known class of universal hash functions that can be computed in constant time are suitable to perform the
addresses-processor mappings [CW79]. These employ randomisation to choose a hash function from a family of
functions to guarantee few collisions in expectation. There is therefore a small probability that the chosen hash function
will perform poorly; in this case, typically a new one is be chosen and the data rehashed. Using universal hashing
for processor-address mappings, the maximum number of logical addresses placed on a single processor is at most

O
(

logn
log logn

)
[Gon81] and this can be reduced to O(log log n) by using two independent hash functions to distribute

collisions between two locations [Mit91].
6A deVnition for Table is not given but it would follow the conventional behaviour of a hash table with calls to insert,
update and search; see [Knu99, §6.4].

124

7.2. Server structures

server Store() is
interface(call read(val i, var v), write(val i, val v)):

{ t is Table(S):
alt
{ accept read(val addr, var v):

t.lookup(addr, v)
| accept write(val addr, val v):
{ var s: t.search(addr, s);
if s ~= NONE then t.update(addr, v) else t.insert(addr, v) } } }

server Access(server Store[N] s) is
interface(call read(val addr, var v), write(val addr, val v)):
alt
{ accept read(val addr, var v):

s[h(addr)].read(addr, v)
| accept write(val addr, val v):

s[h(addr)].write(addr, v) }

server ParallelRAM() inherits
from
{ s is [N] Store():
a is [M] Access(s) }

interface a

Process 7.21: A server providing a distributed parallel random access memory.

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9]

a[0] a[1] a[2] a[3] Access servers

Store
servers

Instance of the ParallelRAM server

client processes

Figure 7.6.: The parallel random access memory server structure (whose components are listed in Process 7.21)
in composition with a collection of client processes. Each client interacts with one Access server
and performs concurrent reads and writes to the memory. Each Access server dispatches accesses
to particular Store servers.

125

Chapter 7. Sire programming structures

7.2.5. Embedding process structures

The previous examples in this section have demonstrated how servers can be used to build resource
and data abstractions in which collections of servers communicate with calls. However, servers can
also communicate with other servers through channels in the same way that processes do, and can
therefore be used to express message passing structures. This is the mechanism by which process
structures are embedded into other processes, to be used as subroutines.
A message-passing structure is expressed in this way by formulating its behaviour in terms of

a reaction to some external stimulus, i.e. a call to perform an action. Each component process is a
server that repetitively waits for input on a set of channels.

Embedding a pipeline

To demonstrate the use of servers to embed process structures, the Sieve of Eratosthenes example
from §7.1.1 [p. 101] is modiVed to be expressed in this form. The behaviour of the original version
was just to generate a set of primes in an array and terminate. This could be used as a subroutine
in this form by writing to an output array in the scope of the parent process. However, using a
subroutine in this way precludes it from storing any state and incurs the overheads associated with
initialising and terminating a set of parallel processes each time it is used. In the modiVed version of
the pipeline example, it provides a call to test whether a number is prime or not, using the pipeline
structure to compute the answer.
Process 7.22 lists the deVnition of the pipeline server Node which, in its initialisation phase,

connects the two channels and receives its prime. It then waits for incoming numbers to test. Numbers
that are not divisible by its prime are forwarded on and numbers that are divisible are forwarded as
the special value NONE. This means that the pipeline always produces a value. Process 7.23 lists the
deVnition of the Control server, which source and sinks values from the pipeline. It Vrst circulates a
stream of integers to initialise the pipeline and then serves a call isPrime to test the primality of a
particular number.
The following program outline shows a new server constructed from the Node and Control

servers to implement a subroutine to test the primality of numbers up to N= 16. Figure 7.7 illustrates
the process diagram of the program.

val SQRTN is 4:
val N is 16:
val NONE is false:
server Control(chanend pin, pout) is ... :
server Node(val i, server Control m, server Node[SQRTN] p) is ... :
server TestPrimes() inherits
from
{ m is Control(p) &
p is [i=0 for SQRTN] Node(i, m, p) }

interface m:
p is TestPrimes():
... p.isPrime(11, r); ...

126

7.2. Server structures

server Node(val i, server Control m, Node[SQRTN] p) is
interface(chanend in, out):

{ var p, mp:
initial
{ if i = 0
then connect in to m.out
else connect out to p[i+1].in;
if i = N-1
then connect in to p[i-1].out
else connect out to m.in;
p := NONE;
while p ~= NONE do in ? p;
mp := p }:

alt { accept in ? m:
{ while m > mp do

mp := mp + p;
if m < mp then out ! m else out ! NONE } } }

Process 7.22: A pipeline node server.

server Control(chanend pin, pout) is
interface(chanend out, in, call isPrime(val p, var r)):
var i, v:
initial
{ connect out to pin;
connect in to pout;
in ! 2;
seq [i=3 for N step 2]
{ in ! i; out ? v } }:

alt {
accept isPrime(val p, var r):
{ in ! v;
out ? r } }

Process 7.23: A pipeline control server.

p[0] p[1] p[2] p[3]m

Instance of the TestPrime server

client process

Figure 7.7.: A server structure that employs a pipeline internally (with the components listed in Processes
7.22 and 7.23) to implement a primality testing algorithm that can be used as a subroutine.

127

Chapter 7. Sire programming structures

7.3. Discussion

7.3.1. Sequential program narrative

Servers provide a simple way to build and structure programs. They can encapsulate both behaviour
and state (in fact arbitrary program components), and are introduced with conventional-style decla-
rations and scoping rules. This allows a distributed parallel program to be expressed as a sequence of
declarations and actions that operate using them.

A generic high-level program sequence, which is familiar to the imperative model of programming,
might consist of the creation and initialisation of a data structure, a computation that operates on
the data structure, then the output of any results. Sire allows this kind of program structure to be
expressed in the following way:

s is S():
initialise(s);
compute(s);
output(s)

with the signiVcant capability that each component can employ distributed parallelism.
The following diagrams illustrate the evolution of the above program in both time, from one

computational component to the next, and in space, with the creation of new processes and dynamic
rebinding of connections between clients and servers.

S

initialise

↓
S

compute

↓
S

output

In contrast to this approach, program components in occam are composed in monolithic parallel
blocks and it is diXcult to discern the structure of the program. The situation is worse still with
programming approaches such as MPI that do not support abstraction of nesting of parallel com-
ponents. In this case, the diUerent logical components of a program must be merged into a single
parallel entity.

A further advantage from constructing a distributed parallel program using servers in a sequential
way is related to the ability to perform testing. Since the interface to a server is a set of calls, they can
be instantiated and tested in isolation. This approach is formalised in the unit testing methodology,
where the smallest units of a program are subjected to a set of tests to establish their correct behaviour.
This is generally considered to be good software-engineering practice.

128

7.3. Discussion

7.3.2. Software resource management

Delivering performance in concurrently accessible distributed data structures relies on simple and
established techniques such as caching to reduce latency, hashing to distribute load, combining and
replication to reduce the eUects of hotspots and the model of consistency.
Integrating specialised mechanisms into hardware is unattractive because it is diXcult to choose

a best general behaviour or way to parameterise a mechanism, such that it can be easily tuned to
particular workloads. Moreover, a risk with integrating complex functionality into general-purpose
systems is that they can exhibit pathological behaviours in certain unpredictable cases that can result
in poor performance.
With a language that provides a small set of primitive mechanisms that relate closely to the

operation of the underlying hardware, it is possible, and indeed convenient, to implement such
mechanisms in software. This provides the additional advantage that the software mechanisms can be
further specialised to the particular application, increasing performance and making the application’s
behaviour more predictable. Similar beneVts were observed, for example, with a software caching
scheme in the RAW microprocessor [MFLA99].

Resource management in PRAM implementations

Caching and hashing were discussed in §7.2.4 [p. 121] in the RAM and EREW-PRAM examples.
For other less restrictive types of PRAM where reads can occur concurrently (a concurrent-read,
exclusive-write (CREW) PRAM), or both reads and writes can occur concurrently (a concurrent-read,
concurrent-write (CRCW) PRAM), an emulation must also deal with access contention as well as
distributing the address space.
There are two established techniques for reducing access contention are relevant to any other

shared distributed data structure similar to a PRAM, such as a database, Vle system or hash table. One
is replication where data items are made available on multiple processors and accesses are distributed
among these. When a replicated location is written to, each of the replicas must be updated to
maintain consistency. This would require broadcast communications between either the access or
storage servers. The other is combining where memory accesses are assumed to traverse a network
and those accessing a particular location will traverse a tree-structured sub-network [Ran87]. The
switches at the nodes of this tree can identify identical requests and permit only one to continue.
When the corresponding response returns, responses are generated for each original request. A
combining network could therefore be implemented with a network of servers between the client-
facing access servers and the storage servers.
To note, the RAM and parallel RAM examples in §7.2.4 [p. 121] did not consider a consistency

model. Consistency is a prime concern to these, or indeed any other concurrently accessible shared
distributed data structure. The level and nature of the consistency required will depend on factors
such as the programming model and the algorithms being expressed. The ability to express a
consistency model in software is therefore a great advantage of the design of sire.

129

CHAPTER 8.

COMPILATION OF SIRE TO THE UPA

programs

sire

compilation

model

UPA

This chapter demonstrates that sire is capable of an eXcient implementation. It does so by describing
the process of compilation for each of the non-conventional aspects of the language that are related
to parallelism and communication. The process is minimal in the sense that it is suXcient to deal
eUectively with all aspects of the language. There is however scope for optimisations to improve
performance or resource usage; some potential ideas are discussed at the end of the chapter.

8.1. Overview

Compilation of a sire program is composed of the following stages:

1. lexing and parsing;

2. semantic checking;

3. source-to-source transformation of the program into a canonical form;

4. generating executable code.

Success of the Vrst two stages establishes a valid input program that conforms to the syntax and rules
of the language. The output of these stages is an abstract representation of the syntax. The abstract
representation is transformed in stage 3 into a canonical form and Vnally emitted as executable code
in stage 4.

The remainder of this chapter describes stage 3 and the non-conventional aspects of stage 4. Stages
1 and 2 are not described because they can be implemented with conventional compilation techniques.

8.1.1. Execution model

A compiled sire program consists of two binaries, a master that contains the compiled user program
and the run-time kernel, and a slave that only contains the kernel. The run-time kernel is a collection
of processes and routines that implement dynamic aspects of sire.
The system on which a sire program executes consists of a set of processors that are labelled 0

to N − 1 and connected by a communication network. Each processor has a memory, a pool of
communication channel ends and the ability to execute a collection of processes simultaneously. Two
channel ends belonging to diUerent processes are connected for the channel to be established and for
the processes to communicate.
The system is initialised by loading the master binary onto processor 0 and replicating the slave

binary over processors 1 to N − 1. Execution begins with each processor creating a kernel service
process that is active for the duration of the user program execution. Service processes are responsible
for managing local channel ends and processes. After this, the service process on processor 0
initialises the user program to execute as a new process.

As the the user program runs and creates more processes, the execution proceeds in time and space
as components of the program are moved to other processors and new processes are allocated and
deallocated dynamically to execute them. Termination of requires all active processes to terminate
and for the (potentially distributed) Wow of control to return to processor 0 before the Vrst process
Vnally terminates.

131

Chapter 8. Compilation of sire to the UPA

8.1.2. Key aspects

Before describing the transformation and code generation stages, the following sections highlight
several key aspects of the compilation process and their interplay with the design of the sire syntax.

Dynamic distribution of the program

A key ability of sire is to permit eXcient dynamic distribution of program code, so that components of
a program are moved at run-time to the processors on which they execute. This is perhaps the most
unconventional aspect of the compilation process compared with other distributed programming
languages that statically allocate program code to each processor. The are a number of reasons why
this is a good approach to take, and each of the following reasons listed strengthen as the number of
processors increases and the memory capacity per processor decreases.

• Run-time reuse of resources. Dynamic distribution makes a reuse of the available memory
between phases of a program; a processor needs only store the processes it is currently
executing, rather than having to store all the processes that it will execute in the duration of
the program.

• Minimal compilation time. The compilation time should not depend on the number of processors
in the target system because it only needs to produce two program binaries: a master one that
contains the run-time kernel components (that support the execution of sire) and the user’s
program, and a slave one that only contains the run-time kernel components.

• Minimal portable binaries. For the same reason, the size of the resulting program binary is also
independent of the number of processors in the target system. This will minimise the binary’s
size and potentially provide portability between diUerent systems with varying numbers of
processors.

• Rapid booting. A two-image binary format allows a system to be booted by loading the master
image and replicating the slave image. Replication can be performed recursively and in a
time logarithmically related to the number of processors. Binaries with separate images per
processor must be loaded sequentially and in a time linearly related to the number of processors;
even for relatively small systems the time taken to boot in this way can be signiVcant.

The single-program multiple-data (SPMD) compilation model, which is used by MPI programs for
example, shares the advantages with fast compilation, minimal binary size and fast booting but since
the single binary is replicated for each processor, there will be a large amount of redundancy. For HPC-
scale systems this might not be a serious issue with substantial amounts of memory per-processor,
but with much smaller memories, e.g. less than 1 MB, eXcient memory usage is essential.

Allocation of processing resources

A second key ability of sire is that processor allocation can be dealt with at compile time, rather than
at run time. This is attractive because dynamic processor allocation, particularly in highly parallel
systems, is problematic:

• it is inherently diXcult to perform in a scalable way;

• it introduces performance overheads;

• performance is less predictable;

• it can potentially cause non-deterministic behaviour in programs that do not terminate properly
or exhaust the number of available processors.

132

8.1. Overview

P0

P1

P2

s

p1 p2

call
P0

P1

P2

s

busy

p1 p2

call

P0

P1

P2

s

busy

p1 p2

requ
est

P0

P1

P2

s

busy

p1 p2

reply

→ → →

Figure 8.1.: An illustration of deadlock arising from many-to-one communications. In this, P1, P2 and P3 are
processes that execute on processor p1 and s is a server that executes on p2. A single bidirectional
communication channel connects p1 to p2 that has space to buUer a single message in each
direction. First, P1 makes a call to s, which is accepted by s. Second, P2 makes a call to s, which
is blocked since s is busy. Third, s send a message to P3 as part of the execution of the call P1

made. This is received by P3 because the outgoing channel is not in use, but P3 is not able to
reply since it is blocked by the call request from P2.

Minimising the costs of processor management is essential to eUectively use highly parallel architec-
tures and to maximise the granularity of parallelism that can be exploited for a particular problem. A
direct analogy can be drawn here between stack- and heap-based memory allocation in sequential
programs. Stack-based memory allocation is scheduled at compile time and a program makes dynamic
reuse of stack memory for procedure calls, whereas heap-based memory allocation is performed at
run time at a much greater cost and with must less predictability.

The only restriction required to allow compile-time processor allocation for a sire program is that
parallel replicators must have constant-valued counts. This however, is not an inherent restriction in
the language and there is scope for an implementation that supports dynamically-sized replicators.
Since the compilation process generates code that distributes itself dynamically it would be simple to
modify the process to support dynamic processor allocation; this is discussed in §8.6.1 [p. 175].

Preventing deadlock with servers

A crucial issue with the compilation of sire programs is to prevent deadlock from arising in many-to-
one patterns of communication with servers. This is a particularly important problem with systems
that have limited memory and capacity for buUering.
When a message traverses the network from its source to a destination, at each stage it occupies

buUering resources. If at some point the message becomes blocked by the presence of another message
occupying resources in its path, then it will remain blocked. Deadlock occurs when messages are
blocked by each other.

When a number of client processes attempt to interact with a server simultaneously, their requests
to do so will become blocked if the server is busy since their route out of the network to the server
is blocked. Then, if the server needs to engage in a communication to complete the current client
request, there may be no available route to the destination and deadlock will occur. Figure 8.1
illustrates this with a simple example.
To remove the possibility of deadlock:

• either the server must not engage in any communication during the servicing of a request;

• or, the client requests must not be able to become blocked in the network, guaranteeing that
routes will be available into the network.

In the compilation process described in this chapter, the former case holds for the service processes
in the run-time kernel, which are introduced in §8.4.2 [p. 157], and the latter case is guaranteed for
server calls with an interrupt mechanism to queue calls from all potential clients.

133

Chapter 8. Compilation of sire to the UPA

Implementing language constructs through transformations

A large part of the compilation process is performed by transforming language constructs into a
simpliVed canonical form in terms of a small subset of sire. The advantages of this approach are
that the output of the transformations is understandable by the programmer and only the canonical
subset resulting from the transformations needs to be implemented.

8.2. Program transformations

In the Vrst phase of compilation, a sire program is transformed into a canonical form such that:

• there are no server declarations or parallel replicators;

• procedure-call recursion is permitted;

• processes can include call speciVcations in their interface and call guards in alternative com-
mands;

• on clauses are introduced to distribute execution and the command or process body of an on
clause are instances of a process (these are explained in §8.2.3 [p. 139]);

• remote channel-end names are rewritten as absolute references to a particular process on a
particular processor (this is explained in §8.2.6 [p. 144]).

Conversion into this form consists of a sequence of eight transformations (based on the properties of
sire described in its deVnition):

1. server declarations are transformed into processes in parallel composition;

2. parallel process instances are substituted with the body of their deVnition;

3. processes in parallel composition are distributed with the insertion of on clauses and processes
are enumerated to assign them identiVers (IDs);

4. interfaces are rewritten to specify the local processor location, process identiVer and component
index if it belongs to an array;

5. remote calls are rewritten to use local channel ends and connections are inserted to connect
these with their remote channel ends implementing the call;

6. the remote channel ends speciVed as connection targets are rewritten to specify the target
channel end absolutely with a processor location, process ID and component index if it belongs
to an array;

7. component processes of parallel commands are transformed into instances of processes, thereby
explicitly deVning their free variables;

8. replicators are transformed into a recursive form.

The transformations can be performed recursively on a representation of the parse tree. Figure 8.2
illustrates the sequence of transformations and the following sections describes each transformation.

The following sections describe each transformation. Where new lower-level syntax is introduced,
it is presented in the same way it was in the deVnition of sire in Chapter 6. Let X be a valid sire
program that is produced by the Vrst two stages of the compilation process and in which no name is
speciVed more than once. To illustrate the operation of each phase, the transformations are applied to
the program given in Process 8.1. This is a simpliVed version of the server pipeline from §7.2.5 [p. 126]
with 4 Nodes.

134

8.2. Program transformations

servers

parallel commands

channels

parallel commands and
replicated processes

Transformation 1: rewrite servers

Transformation 2: expand program

Transformation 3: distribute processes

Transformation 4: rewrite interfaces

Transformation 5: rewrite remote calls

Transformation 6: rewrite connection targets

Transformation 7: contract program

Transformation 8: rewrite replicators

a valid sire program

a sire program in canonical form

Figure 8.2.: The sequence of program transformations that are applied to a valid sire program to produce a
canonical form. This form does not include servers or parallel replicators, processes are distributed
explicitly with the on clause and channel-end references are rewritten to specify the process to
which they refer.

135

Chapter 8. Compilation of sire to the UPA

server Node(val i, process Control m, Node[4] p) is
interface (chanend in, out) to
initial
{ if i = 0
then connect in to m.out
else connect out to p[i+1].in;
if i = 3
then connect in to p[i-1].out
else connect out to m.in }:

alt
{ var v:
in ? v;
out ! v+1 }

server Control(chanend pin, pout) is
interface (chanend in, out, call x(var v)) to
initial
{ connect out to pin;
connect in to pout }:

alt
{ accept x(var v):
{ out ! 0;
in ? v } }

server Pipeline() inherits
from
m is Control(p[0], p[3]):
p is [4] Node(m, p)

interface m

s is Pipeline():
var v: s.x(v)

Process 8.1: Compilation transformations example: input program.

136

8.2. Program transformations

8.2.1. Transformation 1: rewrite servers

In this stage, servers in X are transformed from a sequence of declarations into processes.

The transformation

Each server declaration in X is transformed into named processes in parallel composition with their
scope with additional calls added to implement their termination. Let T be a speciVcation of a server
or instance of a server type where:

• Tinterface = {F1, F2, · · · , Fk} for k ≥ 0 is the set of interface speciVcations;

• Tinitial = {I1, I2, · · · , I`} for ` ≥ 0 is the set of initialisation commands;

• TVnal = {F1, F2, · · · , Fm} form ≥ 0 is the set of Vnalisation commands;

• Talt = {A1, A2, · · · , An} for n ≥ 0 is the set of guarded alternatives

and S(x) be its scope where x is free, then a server declaration

x is T : S(x)

is transformed into

x is interface(F1, F2, · · ·, Fk, call end()):
{ I1; I2; · · ·; I`;
var c: c := true;
while c do
alt
{ accept end() c := false
| A1 | A2 | · · · | An };

F1; F2; · · ·; Fm }
& { S(x); x.end() }

where the name c is not speciVed in the transformed server process. A replicated server declaration

x is [i=b for c] T : S(x)

is transformed as above with additional termination calls to each of the component processes

x is [i=b for c] interface (F1, F2, · · · , Fk, call end()): · · ·
& { S(x); seq [i=0 for c] x[i].end() }

Example

Process 8.2 shows the server transformation applied to Process 8.1.

137

Chapter 8. Compilation of sire to the UPA

{ m is interface (chanend in, out, call x(var v), end()):
{ connect out to p[0].in;
connect in to p[3].out;
var continue: continue := true;
while continue do
alt
{ accept end():

continue := false
| accept x(var v):
{ out ! 0;
in ? v } } }

& p is par [i=0 for 4]
interface (chanend in, out, call end()):
{ if i = 0
then connect in to m.out
else connect out to p[i+1].in;
if i = 4-1
then connect in to p[i-1].out
else connect out to m.in;
var continue: continue := true;
while continue do
alt
{ accept end():

continue := false
| var v: in ? v:

out ! v+1 } }
& { var v:

m.x(v);
m.end();
seq [i=0 for 4] p[i].end() } }

Process 8.2: Transformation example: stage 1, rewritten servers.

138

8.2. Program transformations

8.2.2. Transformation 2: expand program

In this stage, instances of process instances in X that contain parallel commands are substituted
with the body of their deVnition with the correct abbreviations of their actuals. This is performed
according to the substitution semantics for procedures.
The output of this transformation is an expanded form of the program in which no parallel or

parallel replicated commands are contained in any deVnitions. This allows the distribution of nested
processes to diUer between instances and precludes the need to deal with channel-end parameters
and then remove them when they are no longer required in stage 4, where interfaces are removed.

The transformation

Let f1, f2, · · · , fn be formal parameters and a1, a2, · · · , an be actual parameters, for n ≥ 0. If X
contains the deVnition

process N (f1, f2, · · · , fn) is P

and P contains a parallel command, then each instance of the type N

N(a1, a2, · · · , an)

is substituted with

f1 is a1 : f2 is a2 : · · · : fn is an : P

Example

Since there are no process instances in Process 8.2, this stage leaves it unchanged.

8.2.3. Transformation 3: distribute processes

In this stage, processes in X are allocated to physical processors according to a static schedule and
X is rewritten in a form to direct this allocation at run time. The eUect of this is that during the
execution of X , processes are allocated and deallocated to processors dynamically (according to the
schedule), thereby reusing each processor’s available memory.

The on clause

process = on 〈expression〉 do 〈process〉

The on clause provides a way to distribute execution. Let p be a value and P be a process then

on e do P

causes P to be executed remotely on processor p. The process terminates when P terminates and
any variables changed by P are updated locally with the same eUect as the local execution of P :[[

P
]]

=
[[
on e do P

]]
The transformation

Processor allocation follows a simple scheme where each process in a parallel command is allocated
to a processor and each process array is allocated to a contiguous block of processors. This allows
each component process to be addressed with the processor ID corresponding to the base address of
the array with an oUset into it.

139

Chapter 8. Compilation of sire to the UPA

Let |P | denote the number of component processes of an array P , such that for a single process Q,
|Q| = 1, |[i = b for c step s] Q| = c and |[i = b1 for c1 step s1, i = b2 for c2 step s2]Q| = c1× c2
etc. where b, c and s are integer values (for an implementation of sire that permits dynamically-sized
replicators, c would be an expression and the proposed approach would work in the same way).
Taking X to be the input process P , b to be the base processor variable and i be a process ID, then
the algorithm to allocate processors (and at the same time assign IDs to each process for use in later
stages) proceeds in the following way.

(1) Set b to 0, i to 0 and allocate P to processor b (allocation to this processor is implicit since
execution starts at processor 0).

(2) For each command C of P :

• If C is a parallel command with n anonymous component processes Q1, Q2, · · · , Qn

{ Q1 & Q2 & · · · & Qn }

then each component is allocated to the processors b, b+ |Q1|, b+ |Q1|+ |Q2|, · · · , b+
|Q1|+ |Q2|+ · · ·+ |Qn−1| and to have the IDs i, i+ 1, · · · , i+ n respectively. They are
then rewritten with on clauses to perform the distribution:

{ Q1

& on b+ |Q1| do Q2

& on b+ |Q1|+ |Q2| do Q3

& · · ·
& on b+ |Q1|+ |Q2|+ · · ·+ |Qn−1| do Qn }

With named component processes, the on clause is inserted between the name label and
process.

• Set b to b+ |Q1|+ |Q2|+ · · ·+ |Qn|, i to i+ n and apply the allocation (starting from
step 2) recursively to each component process, each time updating the values of b and i.

(3) For each remaining procedure or function in X , assign it a unique ID i′ > i.

Process mappings

After this transformation, each process is assigned a unique identiVer and can be associated with a
particular processor. The following notation is used to denote these mappings; they represent the
lookups that would be performed on internal compiler data structures.

DeVnition 8.1 (Process ID). The function procid(n) returns an integer value at compile time that
uniquely identiVes the process or process array name, n, from all other processes in the program.

Then, for any component processes p or process arrays q of X , procid(p) 6= procid(q).

DeVnition 8.2 (Process location). The function location(n) returns the processor allocated to the
process with name n.

Then, each process p is allocated to the processor location(p) and each process array q is allocated to
the block of processors starting at location(q).

The processor allocation for components of process arrays is based on a linear combination of the
replicator indices, deVned by the following function that produces an expression consisting only of
constants or replicator indices. This is used to transform parallel replicators in stage 8.

DeVnition 8.3 (Process array parameters). The functions dims(x) and bases(x) return the dimen-
sions and bases respectively of each index range of a process array x. Let Ix be an index range[[
ix = bx for cx

]]
, where ix is a name and bx and cx are integer values, P be a process and

p =
[[
par [I1, I2, · · · , Id] P

]]

140

8.2. Program transformations

then dims(p) = {c1, c2, · · · , cn} and bases(p) = {b1, b2, · · · , bn}.
DeVnition 8.4 (Component process oUset). A component process of a d-dimensional array p where
d ≥ 1 with dimensions of length `1, `2, · · · , `d is allocated to the processor

location(p) + index(p, e1, e2, · · · , ed)

where e1, e2, · · · , ed are the subscript expressions selecting the component and where

index(p, e1, e2, · · · , ed) =
d∑

i=2

(ei − bi)
d∏

j=i

lj

+ (e1 − b1)

where {`1, `2, · · · , `d} = dims(n) and {b1, b2, · · · , bd} = bases(n). For processes that are not
a component of an array, when d = 0, then index() has the value −1. This is used to discern
component processes.

As an example, given a 3-dimensional array a where dims(a) = {4, 3, 2} and bases(a) = {0, 0, 0},
then the component with indices (i3, i2, i1) has the oUset i1 + (2× i1) + (3× 2× i3).
DeVnition 8.5 (Interface component ID). The function intid(n.c) returns an integer value that
uniquely identiVes the channel-end c within the interface of the process n.

Then, for any components n.c and n.d of the same interface, intid(n.c) 6= intid(n.d).

Example

Process 8.3 shows the server transformation applied to Process 8.2, unchanged parts of the example
are omitted for brevity. Table 8.1 shows the values of procid(), location() and index() for to each
process, where ‘main’ is the anonymous client process. This corresponds to an internal data structure
that would be maintained by the compiler.

Process procid() location() index() Interface mappings

m 0 0 - intid(m.in) = 0, intid(m.out) = 1,
intid(m.x) = 2, intid(m.end) = 3

p 1 1 i intid(p.in) = 0, intid(p.out) = 1,
intid(p.end) = 2

p[0] - 1 0 -
p[1] - 2 1 -
p[2] - 3 2 -
p[3] - 4 3 -
main 2 5 - -

Table 8.1.: Values associated with each process in Process 8.3 after transformation 3.

{ m is interface (chanend in, out, call x(var v), end()) to
...

& p is on 1 do par [i=0 for 4]
... ||

& on 5 do
... }

Process 8.3: Transformation example: stage 3, process distribution and processor allocation.

141

Chapter 8. Compilation of sire to the UPA

8.2.4. Transformation 4: rewrite interfaces

In this stage, interfaces in X are rewritten to specify an absolute reference of the executing process,
using ‘@’ for syntax. An absolute reference speciVes for a process, its location, its ID and index if it
is a component of an array. For an interface, this reference is used to generate code to publish the
channel-end IDs, to make them available to remote processors. The following two transformation
stages rewrite server calls and connection targets using the same syntax. This is used to generate
connections that make requests for remote channel-end IDs.

The details of publishing and requesting channel ends is explained in more detail in Sections 8.4.4
and 8.4.5.

The transformation

absolute-reference = (〈expression〉 : 〈expression〉 : 〈expression〉)
interface = interface ({0 , 〈declaration〉 }) @ 〈absolute-reference〉

Let Rd for d > 0 be a parallel replicator
[[
par [I1, I2, · · · , Id]

]]
, where Ix is an index range[[

ix = bx for cx
]]
, ix is a name and bx and cx are integer values, or for d = 0 be null. Let S be a

sequence and s1, s2, · · · , sn be interface speciVers, then a process p in X

Rd interface (s1, s2, · · · , sn): S

is rewritten as

Rd interface(s1, s2, · · · , sn)@(location(p):procid(p):index(p, i1, i2, · · · , id)): S

Example

Process 8.4 shows the server transformation applied to Process 8.2, unchanged parts of the example
are omitted for brevity.

{ interface (chanend in, out, call x(var v), end())@(0:0:-1):
...

& on 1 do par [i=0 for 4]
interface (chanend in, out, call end())@(1:1:i):
...

& on 5 do
interface(chanend m, p)@(2:5:-1):
... }

Process 8.4: Transformation example: stage 4, rewritten interfaces to specify an absolute reference to its
location.

8.2.5. Transformation 5: rewrite remote calls

In this stage, remote calls in X are rewritten as outputs on local channel ends and additional details
of the sending process are included to identify itself to the server. Remote names are substituted with
new local channel-end names and connections are inserted to connect the local name to the remote
name for each distinct use of the name, i.e. those with diUerent subscripts or with a diUerent call.

142

8.2. Program transformations

The transformation

server-call = 〈local-chanend〉 ! 〈element〉 ({0 , 〈actual〉 })
local-chanend = 〈element〉 @ 〈absolute-reference〉

Let Rd for d > 0 be a parallel replicator
[[
par [I1, I2, · · · , Id]

]]
, where Ix is an index range[[

ix = bx for cx
]]
, ix is a name and bx and cx are integer values, or for d = 0 the index range is null.

Let S be a sequence that contains calls to processes with process names N1, N2, · · · , Nn for n ≥ 0
and s1, s2, · · · , sm form ≥ 0 be speciVcations of interface components. Then, a process p in X

Rd interface(s1, s2, · · · , sm)@(x:y:z): S

is rewritten with additional local channel ends with names c1, c2, · · · , cn that are unique to their
scope as

Rd interface(s1, s2, · · · , sm, chanend c1, c2, · · · , cn)@(x:y:z): S

and each call in S

Nj.x(a1, a2, · · · , ak)

is rewritten with a preceding connect command1 and a local channel end that speciVes the processor
location and process ID of the executing process

connect Nj to Nj .x;
cj@(location(p):procid(p):index(i1, i2, · · · , id)) ! x(a1, a2, · · · , ak)

Example

Process 8.5 shows the server transformation applied to Process 8.4.

{ m is interface (chanend in, out, call x(var v), end())@(0:0:-1):
...

& p is par [i=0 for 4]
...

& { interface(chanend m, p)@(1:1:-1):
var v:
connect p to m.x; m@(5:2:-1) ! x(v);
connect m to m.end; m@(5:2:-1) ! end();
seq [i=0 for 4]
{ connect p to @(1:1:i).2;
p@(5:2:0) ! end() } } }

Process 8.5: Transformation example: stage 5, rewriting of remote calls and insertion of implicit server
connections.

1By doing this every call is always preceded by a connection. The reason is to simplify the explanation of the transforma-
tion but it is unnecessary since in a sequence of calls the channel will already be connected. Therefore, for any call
contained in a sequence of commands, a connect command should be inserted, if there is not already one, at the lowest
position in the sequence such that no command between the connection and call:

• contains a replicator that deVnes an index used in a subscript for the call;

• contains another call to a diUerent server in the same array or to a diUerent call.

143

Chapter 8. Compilation of sire to the UPA

8.2.6. Transformation 6: rewrite connection targets

In this stage, remote channel ends in X are rewritten as an absolute reference to a speciVc channel
end or call, on a speciVc processor, based on the allocation of processes to processors in stage 3. Since
a subscript expression can consist only of constants or replicator indices, its value can be computed
and the target process can be determined.

The transformation

chanend = 〈remote-chanend〉
remote-chanend = @ 〈absolute-reference〉 . 〈expression〉

Remote channel ends and remote calls are rewritten to specify the processor, process ID, process
index (if it is a component of an array) and interface component index. When index() is used
to produce an expression, an implicit mapping is assumed between the form of the mathematical
expression and a corresponding sire expression.
Let p be a d-dimensional array for d ≥ 0 and e1, e2, · · · , ed be subscript expressions, then in X , a

remote channel end of a component of this array that appears in a connect command

connect c to N.c

whereN is a n name (d = 0) or subscripted name n[i1][i2]· · · [id] (d > 0), is rewritten as an absolute
reference with a single subscript index

connect c to @(location(n):procid(n):index(n, i1, i2, · · · , id)).intid(n.c)

Example

Process 8.6 shows the server transformation applied to Process 8.3.

8.2.7. Transformation 7: contract program

This stage performs the opposite transformation to the program expansion in stage 2 by rewriting
processes in X that are preVxed with an on clause or replicator as an instance of a procedure. This is
to simplify the implementation of process distribution since a process type speciVes the complete
environment with the set of formal parameters, which correspond to its free variables.

DeVnition 8.6 (Free variables). Let P be a process then the function free(P) returns a set of names
that are free in P , this includes the names of procedures and functions.

The transformation

Let P be a process, free(P) = {a1, a2, · · · , an} and f1, f2, · · · , fn be formal parameters correspond-
ing to the type of each ai. Variables that are not changed by assignment or input and replicator
indices are of type val. Then, each process in X preVxed by an on clause

on e P

is rewritten as

on e N(a1, a2, · · · , an)

and the deVnition

process N (f1, f2, · · · , fn) is P

144

8.2. Program transformations

{ interface (chanend in, out, call x(var v), end())@(0:0:-1):
{ connect out to @(1:1:0).0;
connect in to @(1:1:3).1;
... }

& on 1 do par [i=0 for 4]
interface (chanend in, out, call end())@(1:1:i):
{ if i = 0
then connect in to @(0:0:0).1
else connect out to @(1:1:i+1).0;
if i = N-1
then connect in to @(1:1:i-1).1
else connect out to @(0:0:0).0;
... }

& on 5 do
interface(chanend m, p)@(2:5:-1):
{ var v:
connect p to @(0:0:-1).2; m@(2:5:-1) ! x(v);
connect m to @(0:0:-1).3; m@(2:5:-1) ! end();
seq [i=0 for 4]
{ connect p to @1:1[i].2;
p@(2:5:0) ! end() } } }

Process 8.6: Transformation example: stage 6, rewriting of remote channel ends to specify an absolute
reference to the target process.

is introduced where N is not speciVed by any other deVnition. Let Ix is an index range
[[
ix =

bx for cx
]]
, ix is a name and bx and cx are integer values, then each replicated process in X

par [I1, I2, · · · , Id] P
where d ≥ 1 is rewritten as

par [I1, I2, · · · , Id] N(a1, a2, · · · , an)
and the deVnition

process N (f1, f2, · · · , fn) is P
is introduced where N is not speciVed by any other deVnition.

Example

Process 8.7 shows the server transformation applied to Process 8.6.

8.2.8. Transformation 8: rewrite replicators

In this stage, replicators inX are implemented by transforming them into processes that use recursion
to allocate processors in parallel using the on clause to distribute execution.
Consider Process 8.8 below, which is based on an example proposed by May [May99]:

process d(val t, n) is
if n = 1 then p(t)
else { d(t, n/2) & on t+(n/2) do d(t+(n/2), n/2) }

Process 8.8: A process that employs parallel recursion to distribute execution.

145

Chapter 8. Compilation of sire to the UPA

process P1() is
par [i=0 for 4] P3(i)

process P3(val i) is
interface (chanend in, out, call end())@(1:1:i):
... :

process P2() is
interface(chanend m, p)@(2:5:0):
... :

{ interface (chanend in, out, call x(var v))@(0:0:-1):
...

& on 1 do P1()
& on 5 do P2() }

Process 8.7: Transformation example: stage 7, program contraction with the creation of procedure instances.

It works by oYoading a copy of itself to a remote processor each time it recurses. These oYoaded
processes then, themselves, continue this behaviour. Each level of recursion sees a doubling of the
capacity to initiate computations and this follows the structure of a binary tree. The parameter t
is the distribution base and n is the number of processes to distribute or the interval. At each stage
of the recursion, t is moved to the middle of the interval and n is halved. When each instance of d
executes with its parameter n equal to 1, it halts the recursion and executes the process p and t then
indicates the index of each process.
As an example, the execution of d(0, 8), which distributes p over 8 processors, p0, p1, ..., p7, is

illustrated by Table 8.2. The table shows at each time step the state of each processor, given by the
process it is executing. After 4 steps in the recursion, each processor executes the process p.

Step p0 p1 p2 p3 p4 p5 p6 p7

0 d(0,8)
1 d(0,4) d(4,4)
2 d(0,2) d(2,2) d(4,2) d(6,2)
3 d(0,1) d(1,1) d(2,1) d(3,1) d(4,1) d(5,1) d(6,1) d(7,1)
4 p(0) p(1) p(2) p(3) p(4) p(5) p(6) p(7)

Table 8.2.: Illustration of the behaviour of Process 8.8 to distribute the execution of the process p.

Generalised distribution of a replicated process

Process 8.8 can be generalised to distribute non-powers-of-two process arrays to arbitrary processor
ranges, for replicators with multiple index ranges, and for processes with arbitrary parameters.

To distribute arbitrary sized process arrays, an additional parameter m can be added to record how
much of the interval needs to be distributed and the recursion can be terminated when it exceeds
this. Process 8.9 is a modiVed version of Process 8.8 that distributes the process p over the processors
pt, pt+1, · · · , pt+m−1 where n is the next power-of-two larger than m.
For multidimensional replicators, the value of each replicator index can be produced from single

array index by an arithmetic mapping.

DeVnition 8.7 (Replicator index map). A d-dimensional array n with dimensions `1, `2, · · · , `d
contains N =

∏d
i=1 `i components. Let i be a component index in the range 0 to N , then the jth

146

8.2. Program transformations

process d(val t, n, m, b) is
if
{ n = 0: p(t)
| m > n/2:
{ on b+t+(n/2) do d(t+(n/2), n/2, m-n/2, b) &
d(t, n/2, n/2) }

| m <= n/2: d(t, n/2, m, b) }

Process 8.9: A generalised version of Process 8.8 that distributes arbitrary sized arrays over arbitrary processor
ranges.

replicator index for process i is

ri(n, i, j) = bj +

(
1

i

j−1∏
k=1

`i

)
mod `j

where {`1, `2, · · · , `d} = dims(n). and {b1, b2, · · · , bd} = bases(n).

As an example, given a 3-dimensional array a where dims(a) = {4, 3, 2} and bases(a) = {0, 0, 0},
then the ith component has the replicator index values i mod 2, i

3 mod 3 and i
4×3 mod 4. Since ri()

maps a one-dimensional index into a multidimensional index and index() performs the opposite
mapping, then for a d-dimensional array n they have the relationship

i = index(n, ri(n, i, 1), ri(n, i, 2), · · · , ri(n, i, d)).

When ri() is used to produce an expression, in the following transformations an implicit mapping
is assumed between the form of the mathematical expression and a corresponding sire expression.

Lastly, arbitrary sets of parameters can be appended to those of the distributing process and passed
between instances.

The transformation

Let f1, f2, · · · , fn be formals; a1, a2, · · · , an be actuals; b1, b2, · · · , bd and c1, c2, · · · , cd be integer
values; i1, i2, · · · , id be names; P be a process; andN (f1, f2, · · · , fn) P be the deVnition of a process
with the name N . Then, in the scope of N , the d-dimensional replicator

par [i1 = b1 for c1, i2 = b2 for c2, · · · , id = bd for cd] N(a1, a2, · · · , an)

which will be referred to as r, is rewritten as

D(b, N, M)

where N =
∏n

j=1 cj andM = 2j such that 2j−1 < N ≤ 2j and the deVnition

147

Chapter 8. Compilation of sire to the UPA

process D(val t, n, m, b,
f ′1, f

′
2, · · ·, f ′m) is

if
{ n = 0: N(a′1, a

′
2, · · ·, a′n)

| m > n/2:
{ on b+t+(n/2) do

D(t+(n/2), n/2, m-n/2,
n(f ′1), n(f ′2), · · ·, n(f ′m)) &

D(t, n/2, n/2,
n(f ′1), n(f ′2), · · ·, n(f ′m)) }

| m <= n/2: D(t, n/2, m,
n(f ′1), n(f ′2), · · ·, n(f ′m)) }

is introduced where D is not speciVed by any other deVnition, the ordered set

{f ′1, f ′2, · · · , f ′m} = {x | x ∈ {f1, f2, · · · , fn}, x is not a replicator index}

which consists the formal parameters that are not replicator indices, n(fi) is the name of the formal
parameter fi and a′1, a

′
2, · · · , a′m are the actuals parameters of an instance of N where replicator

indices are substituted with an expression converting from the index t, deVned as

a′j =

{
n(fk) if fk is not a replicator index (∀`,n(fk) 6= i`)

ri(r, t, `), if fk is the `th replicator index (n(fk) = i` for some `).

Example

Process 8.10 shows the server transformation applied to Process 8.7.

148

8.2. Program transformations

process P1() is
P4(1, 4, 4)

process P4(val t, n, m) is
{ var x: x := n / 2;
if
{ n = 0: P3(t)
| m > x:
{ on (1 + (t + x)) do P1(t + x, x, m - x) & P4(t, x, x) }

| m <= x: P4(t, x, x) } }

process P3(val i) is
interface (chanend in, out, call end())@(1:1:i):
{ if i = 0
then connect in to @(0:0:0).1
else connect out to @(1:1:i+1).0;
if i = N-1
then connect in to @(1:1:i-1).1
else connect out to @(0:0:0).0;
var continue: continue := true;
while continue do
alt
{ accept end():

continue := false
| var v: in ? v:

out ! v+1 } }:

process P2() is
interface(chanend m, p)@(2:5:-1):
{ var v:
connect p to @(0:0:-1).2; m@(2:5:-1) ! x(v);
connect m to @(0:0:-1).3; m@(2:5:-1) ! end();
seq [i=0 for 4]
{ connect p to @(1:1:i).2;
p@(2:5:0) ! end() } }:

{ interface (chanend in, out, call x(var v))@(0:0:-1):
{ var continue: continue := true;
while continue do
alt
{ accept end():

continue := false
| accept x(var v):
{ out ! 0;
in ? v } } }

& on 1 do P1()
& on 5 do P2() }

Process 8.10: Transformation example: stage 8, transformation of replicators to a recursive form and the
output program in canonical form.

149

Chapter 8. Compilation of sire to the UPA

8.3. Machine target

The generation of executable code for sire programs is described using the XMOS XS1 architec-
ture [May09] as a target. There are a number of important reasons why targeting a real architecture
is a good way to present this description.

1. The semantics of the instruction set are well deVned (see [May09] for the deVnition). A
description of the compilation process with a new instruction set or set of subroutines would
require a complete speciVcation of its semantics and, if it were not implemented, a belief that it
would be capable of an eXcient implementation.

2. A functioning implementation of the sire compiler and run-time kernel has been developed
for the XS1 architecture. This provides a proof-of-concept and conVdence that the proposal is
practical. Moreover, the experience gained in doing this was an integral part of the development
of the language.

3. The speciVcation of XS1 implementations and measurements of their silicon area and per-
formance provide a basis for a hypothetical implementation of a system employing these
processors, in order to obtain an associated performance model, which is introduced in Chap-
ter 9. The model is used in conjunction with a software simulation to evaluate the sire language
on systems that employ large numbers of processors.

4. The sire notations are capable of being compiled into short sequences of operations and it is
important that this is demonstrated.

Even with these advantages, if the XS1 architecture was a radical departure from contemporary
parallel systems then a compilation process targeting it would not generalise to diUerent processor
architectures. This however is not the case. The XS1 architecture provides a simple set of operations
in the ISA for communication, threading and synchronisation and, although the architecture is
unconventional with the way that these are integrated in the ISA, they capture the essential aspects
of a message-passing parallel computer.
For an implementation of the sire language targeting a diUerent architecture, one way to retarget

the compilation process in this chapter would be to translate each operation into an equivalent one
provided by the target, or if there was no such operation, to implement it as a routine as part of a
small run-time kernel. It is likely that for most architectures, an eXcient implementation of these
primitive operations would be possible since the behaviour of each one has been chosen such that it
can be implemented eXciently in hardware and executed in a single cycle.2

8.3.1. The XS1 architecture

An XS1 tile contains a memory and a processor core. The core has hardware resources that support
the simultaneous execution of a set of threads, including a scheduler and mechanisms for synchro-
nisation and locking. It also has a set of channel-end resources that are the physical end-points of
communication channels. These are multiplexed onto physical links that connect directly to a switch,
connecting the tile to the network. Threads on the same core have symmetric access to the memory
and can use channel ends to communicate locally on the same processor, or remotely, between
diUerent processors. Figure 8.3 shows a block diagram of these main components of an XS1 tile.

8.3.2. Presentation of instruction listings

The remainder of this section is presented in terms of XS1 assembly. There are two reasons for this,
Vrst, to specify precisely the process of compilation and, second, to demonstrate that all features

2For instance, the implementation of occam-π, which extended occam 2, targeted the conventional x86 architecture and
it was noted that the implementation of occam primitives for concurrency were very lightweight when compared to
similar constructs in conventional languages [WB05].

150

8.3. Machine target

thread1 state

thread2 state

threadn state

...

scheduler

resources

execution pipeline, inc. ALUs

memory

channel end1

channel end2

channel endm

...

core

tile

switch

· · ·

network links

Figure 8.3.: A block diagram of the XS1 architecture. A tile consists of a processor core and memory. The
processor core has a set of thread, channel end, synchroniser and lock resources.

of sire correspond to short sequences (i.e. tens of instructions). A simpliVed instruction set is used,
which is described in Appendix B, but the reader will need to be familiar with the architecture and
instruction set. They are referred to the architectural deVnition for full details [May09] and as a
companion for this section.
Some additional notation is used to further simplify the assembly listings.

• Instruction sequences take two formats that are used interchangeably:

– annotated assembly listings are used when sequences of instructions can be written
concisely or special attention must be paid to the instructions;

– numbered sequences of steps described in prose are used when instruction sequences are
dominated by memory accesses and management of repetitions or control Wow.

• The management of available registers, the allocation of stack storage for spilling, implemen-
tation of the calling convention and generation of arithmetic expressions are assumed to be
performed by the compiler by inserting additional instructions. This is to give clarity to the
behaviour of the sequences. The following notation provides this convenience:

– mathematical variables are used in the following fragments of sire and instruction listings,
in the place of channel ends, values and expressions;

– let N be a label and a1, a2, · · · , an be variables, then the notation
BL N(a1, a2, · · · , an)

denotes a procedure call to the address speciVed by N with parameters ai passed accord-
ing to the calling convention (deVned below in §8.3.3 [p. 152]). Let t and i be integer
values, then the notation
BLT t[i](a1, a2, · · · , an)

similarly denotes a procedure call but at the memory address t[i].
– the notation (f1, f2, · · · , fn) used at the beginning of a procedure deVnition, where fi

are variables, denotes the variable names used to represent the parameters that are passed
in registers and on the stack according to the calling convention.

• The notation x[i] denotes a memory address at byte address x with word oUset i.

151

Chapter 8. Compilation of sire to the UPA

• The notation x[i · · · j] denotes a range of memory address x[i], x[i+ 1], · · · , x[j].

• The notation x← y denotes the value y being written to the storage location x, which could
be a register or memory location

• The symbol ‘Bpw’ is the number of bytes per word and ‘bpw’ is the number of bits per word.

The following functions are also used. The Vrst two correspond to lookups that a compiler would
perform on its internal data structures.

DeVnition 8.8 (Array size). The function ‘size(x)’ returns the total size if an array. If x is the name
of a d-dimensional array variable with dimensions of length `1, `2, · · · , `d then size(v) =

∏d
i=1 li, is

the total size of x.

DeVnition 8.9 (Label). The function ‘label(x)’ returns a label assigned to the compiled element x,
such as a procedure or function.

DeVnition 8.10 (Channel end ID). The function ‘chanid(x, i)’ returns the channel-end ID with node
ID x and resource index i by computing the value of the expression (x � 16) ∨ (i � 8) ∨ CHAN,
which corresponds to the format of a resource ID (see Appendix B.4).

Lastly, all communication in the run-time kernel is synchronised according to the sequences
described in Appendix B; communication sequences that do not follow this are listed explicitly.

8.3.3. Calling convention

It is necessary at this point to deVne a calling convention since this is used throughout the remaining
sections. A calling convention speciVes the interactions between a calling process and a callee process,
which occur through a set of parameter registers and the stack. Execution of a process activates a
stack frame that is used to pass parameters, store saved registers and store variables local to the scope
of the process.
The following describes a simple calling convention based on the XMOS Application Binary

Interface [OW10, §2.6]. It is suXcient to implement procedure calling in sire and is used in the
description of the run-time kernel and code generation.
Let P be a process, f1, f2, · · · , fn be formal parameters and a1, a2, · · · an be actual parameters,

then the procedure

process N(f1, f2, · · · , fn) is P

is compiled as the caller in the sequence:

(1) save the lr in sp[0] of frame before the sp is extended by n words (ENTSP n);

(2) pushm required general purpose registers used in the execution of P in the set {r4, · · · , r10}
onto stack from sp[p] to sp[p+m− 1] where p is the oUset of the preserved registers storage
in the stack frame;

(3) the instructions of P ;

(4) popm saved general purpose registers back from sp[p] to sp[p+m− 1] into {r4, · · · , r10};
(5) contract the stack by n words and restore the pc from the lr (RETSP n).

An instance of the procedure N

N(a1, a2, · · · , an)

is compiled as the caller with the sequence:

(1) write the parameters a1, · · · , a4 in the registers r0 to r3 respectively;

152

8.3. Machine target

branch link (for non-leaves)

outgoing parameters

preserved registers

local variables

branch link

outgoing parameters

...

low memory

high memory

callee

caller

Figure 8.4.: Example stack frame layout illustrating the calling convention with a caller and callee. A stack
frame provides space during the lifetime of a procedure call to store lr (for procedures that call
other procedures), to pass parameters and for additional storage to the registers.

(2) write the remaining parameters a4+i to sp[1 + i];

(3) call the procedure and wait for it to return (BL label(N)).

This convention is summarised in Figure 8.4, which shows the layout of the adjacent caller and callee
process stack frames.

153

Chapter 8. Compilation of sire to the UPA

8.4. Run-time kernel

8.4.1. Overview

A sire program is compiled with additional components that implement dynamic aspects of the
language. They are collectively referred to as the run-time kernel. The kernel is divided into two
components: a service kernel for a service process that executes using one thread on each processor
(for the duration of the user program’s execution); and a program kernel comprising a set of routines
for the user program’s processes to engage with the service processes.
The service process is responsible for initialisation of the processor it is executing on and allows:

• a remote process to execute a new process on the processor (the remaining threads on each
processor that are used to execute program processes are called the worker threads);

• a remote process to obtain channel-end IDs that have been allocated on the processor by
particular processes;

• a local process to publish a local channel-end ID it has been allocated.

The remainder of this section describes the service and program kernel routines. The following
Vgures and tables summarise various aspects of these and can be referred to while reading.

• Figure 8.5 provides a high-level overview of the run-time kernel, illustrating the division
between the service and program components, and listing the routines and the main data
structures.

• Figure 8.6 shows the memory layouts of the master and slave nodes that is produced by
compilation.

• Table 8.3 summarises the kernel routines.

• Table 8.4 lists the constant values used in the run-time kernel.

• Table 8.5 lists the storage requirements and labels for the components of these data structures
as well as the other channel end and lock resources used by the kernel.

154

8.4. Run-time kernel

Service kernel

Channel table
tchans, qchans

hostHandler
submitHandler
requestHandler

Program kernel

Process table
tjump, tsize, tcount

host request
source enqueue
submit dequeue

Service process (thread0)

ch
os
t[
0]

cs
ub

[0
]

cr
eq
[0
]

Worker thread1

Worker thread2

Worker threadn

...

cworker[0]

cworker[1]

cworker[n− 1]

Figure 8.5.: Block diagram of the per-processor run-time kernel. The service component deals with remote
requests and the program component deals with local execution of processes. Table 8.3 lists
summarises the operation of the routines listed in each kernel and Table 8.5 summarises the data
structures the channel and process tables (enclosed in boxes). The lines show the channel ends
used to implement the run-time communication.

runtime kernel

program

constant pool

data pool
process table

channel table

thread N (worker)

...

thread 2 (program)

thread 1 (service process)

Master layout
low address

high address

heap

stack

runtime kernel

constant pool

data pool
process table

channel table

thread N (worker)

...

thread 2 (worker)

thread 1 (service process)

Slave layout

heap

stack

Figure 8.6.:Master and slave memory layouts produced by compilation. The master layout is executed on
node 0 and contains the complete program, which starts executing on thread 2. The slave image is
replicated on all other processors.

155

Chapter 8. Compilation of sire to the UPA

Routine Pairing Operation

Service kernel
hostHandler source deal with a request to host and execute a process
subHandler submit deal with a local request from to submit a channel-end ID
reqHandler request deal with a request for a published channel-end ID

Program kernel
host source host the execution of a process from a source

source
hostHandler
host

cause a process to be executed remotely by a host processor

submit subHandler submit a channel-end ID the local service process to be published
request reqHandler request a channel-end ID from a remote service process
enqueue - enqueue a call request
dequeue - dequeue a call request

Table 8.3.: Overview of the kernel routines. A pairing indicates routines that communicate with each other.

Name Description Value

Nthreads number of threads per processor architecture determined
Nchans number of channels per processor architecture determined
Nstack stack space per thread compilation determined
Nprocs maximum number of processes per processor compilation determined
Nparams maximum number of parameters per process compilation determined
Nkcalls number of kernel calls 5
Ihost host jump table index/channel-end resource ID 0
Isub submit jump table index/channel-end resource ID 2
Ireq request jump table index/channel-end resource ID 4
Ienq queue call request jump table index 6
Ideq dequeue call request jump table index 7
Iqsize call request queue size 8

Table 8.4.: Constant values used in the run-time kernel.

Name Words Description

Resources
chost 1 hostHandler request channel-end ID
csub 2 subHandler request and service channel-end IDs
creq 2 reqHandler request and service channel-end IDs
cworker Nthreads−1 worker channel-end IDs for remote process creation
lhost 1 a lock ID to use for resource allocation in the ‘host’ routine

Data structures
tjump Nprocs a process jump table that maps process IDs to local addresses
tsize Nprocs a process size table that records process sizes in bytes
tcount Nprocs a process count table that records the number of times a process is used
tchans Nprocs×4 a channel-end table that records mappings of processes to local channel

ends
qchans Nchans×4 a channel-end request queue that records requests for local channel ends

Table 8.5.: Summary of the storage requirements per processor for the run-time kernel. These components
are statically allocated in the data pool.

156

8.4. Run-time kernel

8.4.2. Structure and operation

The service process Vrst initialises the system and then behaves like a server by repetitively servicing
requests on three channels chost, csub and creq that correspond to hosting processes, publishing
local channel ends and providing access to them.

Initialisation

Each service process performs the following initialisation of the system.

1. Initialise registers. Set the cp, dp and sp registers, and an entry point into the exception handler.

2. Initialise thread registers. Allocate all of the available threads and, for each thread, initialise the
cp, dp and sp registers. Stack space is allocated to threads in blocks of size Nstackat the address

base sp +Nstack × thread ID

where ‘base sp’ is the beginning of the stack region. Each thread is then directed to execute a
short routine to set their exception handler, after which it is deallocated. Deallocation does
not change any of their state, leaving them ready to be allocated as worker threads to execute
processes.

3. Allocate run-time kernel channel ends. Allocate, in sequence, a request channel end for the
hostHandlerand request and service channel ends for the submit and request routines, and
store them at chost[0], creq[0· · · 1] and csub[0· · · 1] respectively. Since no other channel
ends are allocated at this point, they will have consecutive resource IDs from 0. This allows the
channel-end IDs for these channels to be computed for any processor.

4. Allocate worker channel ends. Allocate a channel end for each of the worker threads and store
them at addresses cworker[0 · · ·Nthreads−1].

5. Initialise the jump table. Initialise the kernel calls in the jump table by setting tjump[0 · · · 2] to
the addresses of the source, submit and request routines respectively. The master version
containing the program must also initialise the addresses for each of the component processes.
Since all of the processes are known at compile time, the entries in the master and slave jump
tables can be statically initialised.

6. Initialise the size table. Initialise each entry in the size table tsize[0 · · ·Nprocs−1] to 0.

7. Initialise the request queue. Initialise each entry in the request queue qchans[0 · · · (Nchans-1)×4]
to 0.

8. Allocate a lock. Allocate a lock for the worker threads and store it at lhost[0].

Service ‘loop’

The core of the run-time kernel is deVned by the following sequence that initialises each of the host,
submit and request routine channels to trigger events on the arrival of a message and the execution
of the associated routine. When the handler returns, control is transferred back to the point ‘serve’,
where events are re-enabled.

157

Chapter 8. Compilation of sire to the UPA

B entry branch to the entry point
hostHandler: · · · host-handler instructions
subHandler: · · · submit-handler instructions
reqHandler: · · · request-handler instructions

entry: LDW chost, chost[0]
load the channel-end IDsLDW csub, csub[0]

LDW creq, creq[0]
SETC chost, MODE_EVENT

enable events on the channel endsSETC csub, MODE_EVENT
SETC creq, MODE_EVENT
LDAW p, host

load the address of the handler routinesLDAW p, submit
LDAW p, request
SETV chost, p

set the event vectorsSETV csub, p
SETV creq, p

serve: SETSR EVENT_ENABLE enable events
WAITE wait for an event

Since the behaviour of a service process is similar to that of a sire server process there is potential
for it to cause deadlock, but because none of the service routines engage in any communication, it is
safe for pending clients requests to block in the network. However, the extent to which they block,
i.e. consume network resources, should be limited so that network congestion is minimised. This
is achieved by clients sending short requests to service processes. These requests contain only the
sender’s channel-end ID and they close the route immediately.

To prevent any interleaving of messages from diUerent clients (since they close the route) requests
are received on a separate channel. The subHandler and reqHandler routines therefore are each
permanently allocated two channels, one for requests and the other to service requests. The same
eUect is achieved in the hostHandler and host routines with the use of a worker channel end to
service the request. These channels are stored at chost[0], csub[0], csub[1], creq[0] and creq[1]
respectively.
The following sections deVne the behaviour and implementation of the three event handlers and

the corresponding request routines for each one.

8.4.3. Hosting processes

Execution of an on clause causes the speciVed process to be executed on a remote host processor. The
source process executing it Vrst requests from the host processor a thread, and then communicates
with that thread to transfer the required components and state, then wait to receive any updated
state.

worker thread (processor s) processor t

source → hostHandler (service thread)
host (worker thread)

Process closures

Remote execution of a process P requires the instructions of P , any processes it uses, and its
environment (its free variables) to be made available at the remote processor. These components are
called the closure of the instance of P .

Since each process preVxed by an on clause is an instance of a type in the canonical program form
(the eUect of the program contraction transform, see §8.2.7 [p. 144]), the environment is deVned

158

8.4. Run-time kernel

explicitly by the formal parameters. The closure therefore needs only to contain the set of actual
parameters to the instance of P and any nested (i.e. referenced) processes; it is deVned in the following
way.

DeVnition 8.11 (Process closure). LetP be a process, f1, f2, · · · , fn be formal parameters, a1, a2, · · · an
be actual parameters and X be a program with a deVnition

process N(f1, f2, · · · , fn) P
then instances of N takes the form

N(a1, a2, · · · , an)
and the closure of N consists of the values of the actual parameters a1, a2, · · · , an and the process P .

A process closure is represented by the following sequence of words, which corresponds to the
communication required to transmit it between a source and host:

• the process ID;

• the size s in bytes;

• the instruction sequence in ds/Bpwe words.
• the number of parameters;

• for each parameter p:

– the parameter type t (one of val, var, array, process or function);
– if t =val or t =var, the value of the variable;
– if t =array, the size(p) and the component values of p in a sequence;
– if t =process or t =function:

* the process ID;

* the size s of the process code in bytes;

* the instruction sequence in ds/Bpwe words.

Source routine

The source routine interacts Vrst with the hostHandler routine to allocate a worker thread. The
hostHandler then hands over to the worker, which executes the host routine to carry out the
remote execution. The sequence of communication in the source routine therefore corresponds to
those in the hostHandler and host routines.

source: (vlocation, vcaddr) host location, closure address
ENTSP Nframesize allocate a stack frame
GETID i get the (worker) thread ID
LDW c, cworker[i] load the worker channel-end ID

SETD c, d
where d = chanid(vlocation, Ihost)
is the remote request channel end

OUT c, c send the local channel-end ID as the client identity
OUTCT c, END

}
synchronise and close service process connection

CHKCT c, END
IN c, d receive the worker process channel-end ID
SETD c, d set this as the new destination
OUTCT c, END

}
synchronise and close worker thread connection

CHKCT c, END

Next, the closure is transferred (according the above representation in memory). In the following
sequence each consecutive read accesses a word from the next consecutive word address; i.e. LDW d,
vcaddr[0]; LDW d, vcaddr[1]; LDW d, vcaddr[2] etc.

159

Chapter 8. Compilation of sire to the UPA

(1) read the process ID p and send it;

(2) receive a Wag f to signal acceptance of the process;

(3) if f = 1 then, repeat for j from 0 to tsize[p]:

• read the word at address tjump[p+ i] and send it.

(4) read the number of parameters n;

(5) for each i ∈ {0, 1, · · · , n− 1} read the parameter type t then:

• if t =val then read the value v, send t and send v;
• if t =var then read the value v, send t and send v;
• if t =array then:

• read the total array size ` and send it;
• read a component value v and send it, ` times.

• if t =process or t =function:
• read the process ID p and send it;
• receive a Wag f to signal acceptance of the process;
• if f = 1 then: repeat for j from 0 to tsize[p]:

• read the word at address tjump[p+ i] and send it.

(6) return from the routine (RETSP Nframesize).

Host-handler routine

The hostHandler routine deals with a request for the processor to execute a new process from a
remote source process executing the source routine. It does this by creating a new asynchronous
worker thread to execute the host routine, which deals with the remainder of the source interaction.

hostHandler: IN csrc, chost receive the source channel-end ID
SETD chost, csrc set the source as the local channel-end destination
CHKCT chost, END

}
synchronise and close connection with source

OUTCT chost, END
GETR t, THREAD allocate an asynchronous thread
LDAP p, host load the address of the worker-host routine
TSETR pc, p set the program counter to this
TSETR r0, csrc set the Vrst parameter to the source channel-end ID
START t start execution of the worker thread
B serve return to wait for events

Worker-host routine

The worker-host routine deals directly with the source process, interacting with the source routine,
to receive a representation of a closure, initialise and execute the process contained in the closure and
then transmit back any updated free variables. Since it makes changes to the jump and size tables,
which are shared between all worker threads, a lock is used to obtain exclusive access. Table 8.6
shows the local storage allocated in the stack frame is used by the worker thread to record details of
the closure.
In the following listings, routines to dynamically allocate and deallocate storage in the heap area

of memory for processes and arrays are assumed.3 It is also convenient to deVne a subroutine that

3A memory allocation routine is not described since there are many options that trade space eXciency for performance
and predictability; see Wilson for a survey [WJNB95]. However, an attractive scheme would be where memory is
allocated in Vxed-sized blocks, because of the simplicity and because the block size can be chosen at compile time to
best match the size of the (Vxed-size) processes and arrays being allocated.

160

8.4. Run-time kernel

recvProcess(c):

(1) claim the lock (LDW `, lhost[0]; IN `);

(2) receive the process ID p and set procs[i]← p;

(3) if tsize[p]= 0 then

• send the value 1 to accept the process;
• receive the process size s in bytes and update the size table (tsize[p]← s);
• dynamically allocate w = ds/Bpwe words of store for the process (address a);
• receive w words and write each one to a[0] to a[w − 1] respectively;
• update the jump table with the new address (tjump[p]← a).

(4) if tsize[p]> 0 then

• send the value 0 to decline process;
• increment the process count table (tcount[p]←tcount[p]+1).

(5) release the lock (LDW `, lhost[0]; OUT `).

Process 8.11: A routine to receive a process on a channel c.

Name Words Description

types Nparams/Bpw types of each parameter (val, var, array, process or function)
values Nparams the values of each parameter
sizes Nparams the size of each array parameter
procs Nprocs the IDs of each process in the closure

Table 8.6.: Local storage allocated by a worker thread to host an incoming process.

receives the data describing a process to avoid repetition, this subroutine is listed in Process 8.11 and
is also used in the compilation of alternation in §8.5.1 [p. 167].
The following sequence establishes a connection with the source process:

host: (vcsrc) source channel-end ID
ENTSP Nframesize allocate space on the stack where Nframesize≥Nparams

GETID i get the thread ID
LDW c, tchans[i] load the worker thread channel-end ID
SETD c, vcsrc set the channel-end destination to the source
OUT c, c send the local channel end to the source
OUTCT c, END

}
synchronise and close the source connection

CHKCT c, END

The source and host processes are now ready to engage in the transfer of the process closure,
according to the representation of the closure.
The host Vrst receives the process, then each of the actual parameters in sequence:

(1) call the receive process subroutine (BL recvProcess(c));

(2) receive the number of parameters Nparams in the closure;

(3) receive each parameter, allocating storage for arrays:
repeat for i from 0 to Nparams−1:

• receive the argument type and store in types[i];
• if types[i]=val then receive the value and write it to values[i];

161

Chapter 8. Compilation of sire to the UPA

• if types[i]=var then receive the value and write it to values[i];
• if types[i]=array then:

• receive the array size and write it to sizes[i];
• dynamically allocate sizes[i] words of store and write the address to values[i];
• receive each element of the array and write to the allocated space.

• if types[i]=process or types[i]=function then
• call the receive process subroutine (BL recvProcess(c)).

The process is then initialised and executed:

(4) release the host lock (LDW `, lhost[0]; OUT `);

(5) write the parameter values values[0] to values[3] in the registers r0 to r3 respectively;

(6) write the remaining parameters 4 + i to sp[1 + i];

(7) call the procedure through the jump table (BLT tjump[i]).

Once execution of the process has terminated, the values of referenced variables are sent back and
the memory dynamically allocated to the processes and parameters is deallocated:

(8) send each variable and array variable back to the source:
repeat for i from 0 to Nparams−1:

• if types[i]=var then send the value stored in Pi;
• if types[i]=array then

• send sizes[i] words of the array at address values[i];
• deallocate the array storage.

(9) claim the host lock (LDW `, lhost[0]; IN `);

(10) deallocate each process if it not used by any other worker:
repeat for i from 0 to Nprocs−1:

• decrement the process count table (tcount[i]←tcount[i]−1);
• if tsize[i]= 0 then deallocate the process space at address tjump[i].

(11) release the host lock (LDW `, lhost[0]; OUT `);

(12) yield the worker thread (FREET).

8.4.4. Publishing local channel ends

Processes publish the IDs of channel ends they have allocated by submitting them to their local
service process. They are then recorded in the channel table, referenced against the ID and index of
the process, so they can be requested by remote processes.

worker thread (processor p) service thread (processor p)

submit → subHandler

Submit routine

The submit routine is called by a process executing on a worker thread to submit a local channel-end
ID to be published in the channel-end table for the processor.

162

8.4. Run-time kernel

submit:
(cchanid, vlocation,
vindex, vprocid)

the channel-end ID to submit and its process location,
index and ID

ENTSP Nframesize allocate some space on the stack
GETID i get the (worker) thread ID
LDW c, cworker[i] load the worker channel-end ID

SETD c, d
where d = chanid(elocation,Isub)
is the submit request channel-end ID

OUT c, c send the local channel-end ID as the client identity
OUTCT c, END

}
synchronise and close the request connection

CHKCT c, END

SETD c, d where d = chanid(elocation,Isub+1)
is the service channel-end ID

OUT c, elocation send the processor location
OUT c, eprocid send the process ID
OUT c, eindex send the process index
OUTCT c, END

}
synchronise and close the service connection

CHKCT c, END
RETSP Nframesize

Submit-handler routine

The subHandler is executed by the service thread to deal with the submission of channel end from
local processes by the submit routine.

subHandler: IN csub, csrc receive the source channel-end ID
SETD csub, csrc set the source as the local channel-end destination
CHKCT csub, END

}
synchronise and close the request connection

OUTCT csub, END
LDW c, csub[1] load the service channel end
SETD c, csrc set the source as the local channel-end destination
IN c, vchanid receive the channel-end ID
IN c, vprocid receive the process ID
IN c, vindex receive the process index
CHKCT c, END

}
synchronise and close the service connection

OUTCT c, END

It then updates the channel table and completes any outstanding requests for this channel end.

(1) Update the jth entry of the channel table, where j = ((c� 8)⊕ FFhex)× 3 is the channel-end
resource ID:

STW vchanid, tchans[j]
update the channel-end table entrySTW vprocid, tchans[j + 1]

STW vindex, tchans[j + 2]

(2) Complete any queued requests for this channel end:
repeat for i from 0 to Nchans−1:

• if qchans[i× 4 + 1]= p and qchans[i× 4 + 2]= i then
SETD csub, qchans[i× 4] set the destination to the queued requester
OUT creq, c send the local channel-end ID c
OUTCT creq, END close the outgoing channel
STW 0, qchans[i× 4] clear the entry

(3) Return to wait for events (B serve).

163

Chapter 8. Compilation of sire to the UPA

8.4.5. Remote channel-end requests

Any process can request from any processor a published local channel-end ID. It does this by
submitting to the service process the process ID and index of the channel-end ID it wishes to obtain.
If no channel-end ID corresponding to this criteria has been published, the service process queues
the request until it is submitted by a local process, leaving the requesting process waiting.

worker thread (processor s) service thread (processor t)

request → reqHandler

Request routine

The request routine is called by a worker thread and it interacts with a remote service process
(executing the reqHandler routine) to obtain a channel-end ID.

request: (vlocation, vindex, vprocid) process location, index and ID
ENTSP Nframesize allocate some space on the stack
GETID i get the (worker) thread ID
LDW c, cworker[i] load the worker channel-end ID

SETD c, d
where d = chanid(elocation,Ireq)
is the request channel-end ID

OUT c, c send local channel-end ID as the client identity
OUTCT c, END

}
synchronise and close the request connection

CHKCT c, END

SETD c, d where d = chanid(elocation,Ireq+1)
is the submit service channel-end ID

OUT c, eprocid send the process ID
OUT c, eindex send the process index
OUT c, vintid send the interface component ID
OUTCT c, END close the incoming connection
IN c, d wait to receive the remote channel-end ID
CHKCT c, END close the outgoing connection
SETD c, d set local channel end to remote channel-end ID
RETSP Nframesize deallocate the stack space and return

Request-handler routine

The reqHandler routine deals with remote processes that want to obtain a published local channel-
end ID. If the channel end has already been published, the request is fulVlled immediately, otherwise
it is queued and fulVlled when the channel-end ID is submitted.

reqHandler: IN r, csrc receive the source channel-end ID
SETD creq, csrc set the source as the local channel-end destination
CHKCT creq, END

}
synchronise and close the request connection

OUTCT creq, END
LDW c, csub[1] load the service channel end
SETD c, csrc set the source as the local channel-end destination
IN c, vprocid receive the process ID
IN c, vindex receive the process index
IN c, vintid receive the interface component ID
CHKCT c, END

}
synchronise and close the service connection

OUTCT c, END

164

8.4. Run-time kernel

It then looks up the local channel-end ID. If this channel end has already been submitted by a local
process, it is returned, otherwise the request is queued and fulVlled by a subsequent local channel-end
submission.

(1) Check the published local channel ends:
repeat for i from 0 to Nchans−1:

• if tchans[j×3 + 1]= vprocid, tchans[j×3 + 2]= vindex and tchans[j×3 + 3]= vintid
then:
OUT c, tchans[i× 3] send the local channel-end ID
OUTCT c, END close connection
B serve return to wait for events

(2) If the request could not be completed then queue it:
repeat for i from 0 to Nchans−1:

• if qchans[j × 4]= 0 then:
STW vchanid, qchans[j × 4]

update request queue entry
STW vprocid, qchans[j × 4 + 1]
STW vindex, qchans[j × 4 + 2]
STW vintid, qchans[j × 4 + 3]
B serve return to wait for events

8.4.6. Call-request queuing

The run-time provides three routines for a queue data structure; these are used in the implementation
of alternative commands that contain call accepts (§8.5.1 [p. 167]). They operate on a representation
of the queue that is stored locally to the alternative to provide calls to enqueue a request, dequeue a
request and to return the number of queued requests.
This section describes the storage requirements and behaviour of the data structure but does not

describe the details of an implementation.4

Queue representation

A bound on the number of clients accessing a server can be determined at compile time, but this can
potentially be large when servers are shared by process arrays. To minimise the storage requirement
per client, components of process arrays can be stored with one bit per process and a Vxed overhead
of two words per array to store the base location and base process ID. These details can be used by
the server to perform a remote channel-end ID request from the client when it is ready to service the
call. The channel-end ID of single client processes can be stored directly.
A call queue for an alternative can therefore be implemented with:

• 2 words per single process to store the process ID and channel-end ID;

• 2 + dn/ bpwe words per process array, where n is the number of component processes, to
store the process ID, location and outstanding component request bit set.

A single call queue can also contain requests on multiple channel ends. These can be stored with an
additional 1 word per call channel end and an additional lookup.

4The proposal is intended to deal quickly with a large number of clients and trades some increase in lookup time for a
reduction in space. There are various ways that the data structure could be implemented to make diUerent trade-oUs,
which could, for example, be employed in cases where the number of clients is limited.

165

Chapter 8. Compilation of sire to the UPA

Call enqueue routine

The routine enqueue has six parameters that are passed according to the calling convention:

1. q, the address of the queue;

2. vccall, the call channel-end ID;

3. vcclient, the client channel-end ID;

4. vprocid, the client process ID;

5. vlocation, the client location;

6. vindex, the client process index.

It inserts a call request on the channel end vccall into the queue q from a single process or component
of a process array.

enqueue(q,vccall,vcclient, vprocid, vlocation, vindex):

(1) if vindex < 0 (single process) then insert (vccall, vprocid, vcclient) into the queue q;

(2) if vindex ≥ 0 (process array) then insert (vccall, vprocid, vlocation and vindex) into the queue q.

Call dequeue routine

The routine dequeue has six parameters that are passed according to the calling convention:

1. q, the address of the queue;

2. vccall, the call channel-end ID;

3. vcclient, the client channel-end ID;

4. vprocid, the client process ID;

5. vlocation, the client location;

6. vindex, the client process index.

It removes and returns a queued call request from the queue q.

dequeue(q,vccall, vprocid,vcclient, vlocation, vindex):

(1) if the queue is not empty:

• remove a queued request R from the queue q:
• if it is a single process then:

• update the variables:
• vccall← Rccall;
• vindex ← −1;
• vcclient← Rcclient.

• and return.
• if it is an process array then:

• update the variables:
• vccall← Rccall;
• vprocid ← Rprocid;
• vlocation ← Rlocation;
• vindex ← Rindex.

• and return.

(2) if the queue is empty: vccall← 0.

166

8.5. Code generation

8.5. Code generation

In this section, the generation of instruction sequences for communications and the constructs
alternative, connect, interface, on and parallel are described. The remaining parts of the language can
be compiled using conventional approaches.

8.5.1. Alternation

Let A1, A2, · · · , An be alternatives. Each alternative Ai is an input or call and speciVes a command
Ci to be performed on successful activation. Furthermore, Ai uses a channel end ci and may be
guarded by an expression gi. Let {A′1, A′2, · · ·A′m} be a subset of {A1, A2, · · · , An} consisting of
call accepts. Then, an alternation command

alt { A1 | A2 | · · · | An }

is compiled to the following sequence:

CLRE clear all events
GETR cserve, CHANEND get a service channel end

initialise: · · · instructions to perform initialisation
WAITE wait for an event

alt1: · · ·

for alternative Ai, complete input on ci and execute Ci

or complete call on ci
alt2: · · ·

...
altn: · · ·

setIntrs: · · · on activation of an alternative, set interrupts on all calls
intrHandler: · · · called on reception of a call request when executing

another alternative to save execution state and execute
the callHandler routine to queue the request

callHandler1: · · ·
queue call request for Ai

callHandler2: · · ·
...

callHandlerm:
· · ·

exit: FREER cserve exit point for each alternative
serveQueued: · · ·

In this compiled alternation, the channel ends c′1, c
′
2, · · · , c′m corresponding to each of the calls are

used as request channels and the channel end cserve is used to service the calls. Separating requests
from the body of interactions avoids any interleaving of diUerent call sequences, allowing short
requests that will cause minimum congestion in the network. The same is done in the hostHandler,
subHandler and reqHandler routines.
The following sections describe each of the components in the compiled alternation sequence.

Initialisation

For each unguarded or guarded alternative whose guard expression evaluates to the value true, the
corresponding channel end is initialised to generate an event when a message is received that triggers
the execution of the input or call and its command. Additionally, for call accept alternatives, the
environment vector is set to specify an interrupt routine to be executed to queue the request when a
call request is received but another alternative is being serviced.

167

Chapter 8. Compilation of sire to the UPA

initialise:

(1) repeat for i from 1 to n:

• if Ai is unguarded then:
• if Ai is an input then:
LDAW p, label(Ci) load the address of the command Ci

SETV ci, p set p as the event vector of ci
SETC ci, MODE_EVENT set channel end to generate events
EE ci enable events on ci

• if Ai is a call accept then:
LDAW p, intrHandler load the address of the interrupt handler
SETEV ci, p set p as as the environment vector of ci

• if Ai is guarded then:
• evaluate the expression gi;
• if gi =true then:

• if Ai is an input or call then:
LDAW p, label(Ci) load the address of the command Ci

SETV ci, p set p as the event vector of ci
SETC ci, MODE_EVENT set channel end to generate events
EE ci enable events on ci

• if Ai is a call accept then:
LDAW p, intrHandler load the address of the interrupt handler
SETEV ci, p set p as as the environment vector of ci

• if Ai is just a guard with no input (skip) then:
• if gi =true then execute Ci.

(2) wait for an event (WAITE).

Alternatives

If Ai is an input

ci ? v: Ci

it is compiled to the sequence:

alti: BL setIntrs() call the set interrupts routine
CHKCT ci, END

}
synchronise and close the connection

OUTCT ci, END
IN ci, v receive the message data
CHKCT ci, END

}
synchronise and close the connection

OUTCT ci, END
· · · instructions of Ci

B exit

If Ai is a call accept

accept c(f1, f2, · · · , fk): Ci

where c is a name and f1, f2, · · · , fk are formal parameters, it is compiled to the sequence:

168

8.5. Code generation

alti: BL setIntrs() call the set interrupts routine
IN ci, d receive the caller channel-end ID
CHKCT ci, END

}
synchronise and close the connection

OUTCT ci, END
SETD ci, d set the destination to the caller channel-end ID
OUT ci, 1 instruct the caller to continue
OUTCT ci, END close the connection

Each parameter fi in a call accept is allocated local storage ai in the stack frame. If fi is an array
variable and the length is a speciVed constant c, then the storage ai[0] to ai[c− 1] is allocated. If
the length is unspeciVed or unknown, a single word ai is allocated to fi to store the address of a
dynamically allocated region. The following sequence is libelled since the queued calls continue at
this point. The parameter c is the channel end used for communication.

altContinuei(c):

(1) receive each parameter as a sequence of IN instructions:
repeat for j from 1 to k:

• if fj is of type val or var, then receive the value and write it to aj ;
• if fi is of type array, then receive size(fi) values and write them in sequence to the
components of aj ;

• if fi is of type process or function, then:
• call the receive process subroutine (BL recvProcess(c)).

(2) synchronise and close the connection (CHKCT c, END; OUTCT c, END);

(3) execute the call body, Ci;

(4) send each updated parameter as a sequence of OUT instructions:
repeat for j from 1 to k:

• if fj is of type var, then send the value aj ;
• if fj is of type array, then send the components of aj in sequence.

(5) synchronise and close the connection (OUTCT c, END; CHKCT c, END);

(6) branch to the exit point (B exit).

Enabling call interrupts

On the successful activation of an alternative, the setIntrs routine is executed. This initialises
interrupts on all of the channels for call alternatives and sets the event vectors to interrupt-handler
routines that queue requests. This is so that the intrHandler routine in the next section can quickly
activate the appropriate handler.

setIntrs: LDAW p, intrHandler load the address of the interrupt handler
SETV p, c′1

set the event vectors to the interrupt handler
SETV p, c′2
...
SETV p, c′m
SETC c′1, MODE_INTR

set the channel ends to generate interrupts
SETC c′2, MODE_INTR
...
SETC c′m, MODE_INTR
SETSR INTR_ENABLE enable interrupts
RETSP 0 return to caller

169

Chapter 8. Compilation of sire to the UPA

Handling call interrupts

When a request arrives at a call channel end, an interrupt is generated and the following interrupt
handler is executed. The handler Vrst saves the execution state by writing r0 to r11 and lr to the stack,
then invokes the call handler to deal with the request, then it restores the state and returns from the
interrupt.

intrHandler: EXTSP Nframesize allocate stack space, where Nframesize≥ 14
STW r0, sp[1]

save r0 to r11 and lr to the stack
STW r1, sp[2]
...
STW r11, sp[12]
STW lr, sp[13]
BL ed call the callHandler routine from the environment

vector that was stored in register event data register
when the interrupt occurred

LDW r0, sp[1]
restore r0 to r11 and lr from the stack

LDW r1, sp[2]
...
LDW r11, sp[12]
LDW lr, sp[13]
EXTSP −Nframesize deallocate stack space
SETSR INTR_ENABLE enable interrupts
KRET return from the interrupt

Call-handler routine

The callHandler routine is called from the interrupt handler to deal with a call request that is
received when another alternative is being serviced. It establishes a connection with the caller and
receives its location, process ID and process index in order to queue the request to be dealt with after
the processing for the active alternative. It assumes the queue data structure is allocated in memory
at address q.

callHandleri: IN ci, d receive the caller channel-end ID
CHKCT ci, END

}
synchronise and close the connection

OUTCT ci, END
SETD cserve, d set the destination to the caller
OUT cserve, 0 instruct the caller to wait
OUT cserve, cserve send the new service channel-end ID
OUTCT cserve, END close the connection
IN cserve, vlocation receive the process location
IN cserve, vprocid receive the process ID
IN cserve, vindex receive the process index
CHKCT cserve, END

}
synchronise and close the connection

OUTCT cserve, END
BLT tjump[enqueue]

(q, d, vlocationvprocid, vindex)
queue the request

RETSP 0 return to the interrupt handler

170

8.5. Code generation

Service queued call requests

On completion, each alternative branches to a single exit point where upon any queued requests are
removed from the queue and serviced. Interrupts are re-enabled to service each call in order that
incoming calls can continue to be queued and not block in the network. The queue size at this point
may grow, but this process is repeated until there are no outstanding calls and the queue is empty.

serveQueued:

(1)
BLT tjump[dequeue]

(q,vccall, vprocid,vcclient, vlocation, vindex)
dequeue a request

BL setIntrs() set the call interrupts

(2) if vccall 6= 0 (a request was dequeued), then:

• if vindex ≥ 0 (it was from a component process of an array), then:
BLT tjump[request]

(vlocation, vindex, vprocid,vcclient)
request the remote channel-end ID

SETD vccall, vcclient set this as the destination

• OUTCT cserve, END instruct the caller to continue
B altContinuei(cserve) branch to the remaining portion of the alternative

8.5.2. Communication

Input and output

Let c be a channel end and v be a value, then an output command

c ! v

is compiled to the sequence

OUTCT c, END
}
synchronise and close the channel connection

CHKCT c, END
OUT c, v output the value of v
OUTCT c, END

}
synchronise and close the channel connection

CHKCT c, END

Let v be a variable, then an input command

c ? v

is compiled to the sequence

CHKCT c, END
}
wait to synchronise and close the channel connection

OUTCT c, END
IN c, v receive a value
CHKCT c, END

}
wait to synchronise and close the channel connection

OUTCT c, END

Appendix B.5 explains the use of synchronised communication in these.

171

Chapter 8. Compilation of sire to the UPA

Calls

Let a1, a2, · · · , am be actuals, f1, f2, · · · , fm be formals, c be the name of a local channel end, elocation
be an expression for the processor ID, eindex be an expression for the process index, vprocid be a
process ID value and n be a name of a call. Then, a remote call from a single process

c@(elocation:vprocid:eindex) ! n(a1, a2, · · · , am)

where the call has the speciVer
[[
call n(f1, f2, · · · , fn)

]]
is compiled to the sequence:

OUT c, c send the local channel-end ID as the client identity
OUTCT c, END

}
close the connection

CHKCT c, END
IN c, r receive a response (0 to wait or 1 to continue)
IN c, d receive the service channel-end ID
SETD c, d set this as the new destination
CHKCT c, END close the incoming connection
BT r, continue

wait: OUT c, elocation send the processor location
OUT c, vprocid send the process ID
OUT c, vindex send the process index
OUTCT c, END close the outgoing connection
CHKCT c, END wait to continue

continue:

(1) send each parameter as a sequence of OUT instructions:
repeat for i from 0 tom− 1:

• if fi is of type val or var, then send the value ai;
• if fi is of type array, then send size(fi) components of the array;
• if fi is of type process or function, then:

• send the ID of the procedure or function;
• receive a Wag f to signal acceptance of the process;
• if f = 1 then, repeat for j from 0 to tsize[p]:

• read the word at address tjump[p+ j] and send it.

(2) synchronise and close the connection (OUTCT c, END; CHKCT c, END);

(3) receive each updated parameter as a sequence of IN instructions:
repeat for i from 0 tom− 1:

• if fi is of type var, then receive the value and write it to the storage location for ai;
• if fi is of type array, then receive size(fi) values and write them in sequence beginning
at address ai.

(4) synchronise and close the connection (OUTCT c, END; CHKCT c, END);

8.5.3. Connect

Let c be the name of a local channel end, elocation be an expression for the processor ID, eindex be
an expression for the process index, vprocid be a process ID value and n be a name of a call. Then, a
connect command

connect c to @(elocation:vprocid:eindex).vintid

172

8.5. Code generation

is compiled to the sequence

BLT tjump[request]
(elocation, eindex, vprocid)

call the request routine

SETD c, r0 set the channel-end destination to the remote channel-end ID

8.5.4. On

An instance of a procedure with an on clause is compiled into instructions that forms a representation
of the closure. The closure is then passed as a parameter to a source-handler routine that performs
the interaction with the remote processor to transfer the closure, perform the execution and receive
any updated free variables.
Let f1, f2, · · · , fn be formals and N be the name of a process

process N (f1, f2, · · · , fn) P

then, an instance of the process preVxed with an on clause

on e do N(a1, a2, · · · , an)

is compiled into the following sequence that constructs a parameter in memory that describes the
components of the closure. In this, each consecutive write stores a word to the next consecutive word
address (i.e. STW d, sp[x]; STW d, sp[x+ 1], STW d, sp[x+ 2] etc.); storage for the closure is allocated
on stack and requiresm+ n+ 3 words.

(1) write procid(N);

(2) write n, the number of parameters;

(3) repeat for i from 0 to n:

• if fi is of type val, then write val (0) and the value ai;
• if fi is of type var, then write var (1) and the value ai;
• if fi is of type array, then write array (2), the value size(fi) and the address ai;
• if fi is of type process or function, then write the process ID, procid(ai).

(4) call the source routine with the value of e, specifying the destination processor and the address
of the closure (BLT tjump[source](e, sp[x])).

8.5.5. Interface

Each component of an interface is allocated a channel end, which is then submitted to the service
process to be made available to channel-end ID requests from remote processes.
Let s1, s2, · · · , sn be interface speciVers, elocation be an expression for the processor ID, eindex be

an expression for the process index and vprocid be a process ID value. Then an interface speciVcation

interface (s1, s2, · · · , sn)@(elocation : vprocid : eindex)

is compiled to:

(1) repeat for i from 1 to n:

GETR c, CHANEND allocate a channel end
BLT tjump[submit](c, elocation, vprocid, eindex) call the local submit routine

173

Chapter 8. Compilation of sire to the UPA

8.5.6. Parallel

A parallel command with n component processes

{ P1 & P2 & · · · & Pn }

is compiled to create and initialise n − 1 slave threads to execute processes P2, P3, · · · , Pn. The
master thread, which manages this process also executes P1. Since each slave process is a process
instance, the initialisation of each thread consists of initialising its registers and stack according to
the calling convention, the program counter is set to the process entry point and the lr is set to an
exit point.
Let actuals(P) denote the set of actual parameters of a process instance P . Then, the following

routine sequence deVnes the initialisation performed by the master thread.

(1) get a thread synchroniser resource (GETR s, SYNC);

(2) repeat for each component process i from 2 to n where {a1, a2, · · · , am} = actuals(Pi):

• GETST t, s get a synchronised thread t
LDAP p, label(Pi) load the address of the slave entry point
TSETR pc, p set the program counter to p
LDAP p, slaveExit load the address of the slave exit point
TSETR lr, p set the lr to p

• repeat for i from 1 to 4:
write the value of v to register i− 1 (TSETR ri− 1, t, v) where:
• v is the value of ai if fi is of type val;
• v is the address of ai if fi is of type var;
• v is the value of ai if fi is of type array;
• v is tjump[procid(ai)] if fi is of type process or function.

• repeat for i from 5 tom:
load the value v onto stack at oUset 1 + (4− i) subject to the type conditions of ai in

the previous step.

This is followed by the instruction sequence:

MSYNC s start execution of slave threads

label(P1):
... P1 instructions
MJOIN synchronise and terminate with slave threads
B masterExit

slaveExit: SSYNC synchronise with the master thread
masterExit: FREER s free the synchroniser

8.5.7. Procedure calls

LetN be a name and a1, a2, · · · , an be actual parameters, then an instance of a procedure or function

N(a1, a2, · · · , an)

is compiled according to the calling convention, except that instead of using the conventional
link-and-branch instruction, BL, it is performed via the jump table with the BLT instruction:

BLT tjump[N](a1, a2, · · · , an)

This is because procedures and functions from the user program are moved between diUerent proces-
sors and their locations in memory will vary. In contrast, the relative oUsets between procedures in
the run-time kernel will not change, and for inter-kernel calls, the BL instruction can be used.

174

8.6. Discussion

8.6. Discussion

This section discusses ways in which the compilation process could be improved or extended.

8.6.1. Dynamic processor allocation

The proposed sire compilation scheme does not allow parallel replicators to have a dynamic size
(although this is not an inherent restriction in sire). Allowing dynamic replicators would potentially
make the expression of some program structures more convenient, at the cost of moving the allocation
into the program execution.

To support dynamic replicators, additional dynamic allocation routines and a new transformation
stage would be required. A processor allocation routine would be passed a required number of proces-
sors and return the location of a contiguously-addressed block of that size; a processor deallocation
routine would be passed the location of an allocated block of processors to free them for reuse.
These routines are analogous to malloc and free in the C programming language. The additional
transformation would operate between stage 6 and 7, to insert calls to allocate processors before
a dynamically-sized parallel command and to deallocate them after. The base processor location
returned by the allocation routine can then be passed as a parameter to the component processes
that reference channel ends of the component processes of the replicator.

8.6.2. Latency hiding

The proposed processor allocation scheme allocates one process to each processor. This approach
was taken primarily to simplify the explanation of the subsequent transformations that deal with
absolute references. However, processes waiting on communication will cause the processor to idle.
An implementation of the UPA is characterised by the number of processors, the communication

grain and the communication latency. By allocating a set of processes to a single processor, processes
not waiting on communication can be executed while others are, and by allocating enough processes
to a single processor (based on the latency) the processor will, in principle, never idle. This is the
approach taken by PRAM emulations with BSP machines to obtain optimal eXciency [Val90a, Val90b].

Latency hiding with PRAM programs is relatively simple since there is no locality, so processes can
be allocated to any processor and all memory accesses will complete in a time directly proportional
to the latency. Although latency hiding can in principle be applied to sire programs, it is complicated
by two issues relating to the use of communication channels. Firstly, arrays of processes must be
allocated on consecutively numbered processors in order for component processes to be addressed by
a base location and an oUset. One solution to maintain this, while increasing the number of processes
per processor, is to allocate consecutive chunks of an array to consecutive processors. The addressing
then works by dividing oUsets by the chunk size. Secondly, the latency of server calls depends not
only on the network but also by the time taken to execute the call. Latency hiding for collections
of processes that access servers can only be performed when the execution time of a call can be
determined. However, it is likely that in many cases, such as with the server-based random access
memories described in §7.2 [p. 116], that the latency of a server call is dominated by the machine
latency as it would be for memory accesses in a PRAM, thus allowing latency to be more easily
hidden.
Several potential optimisations when performing latency hiding are discussed in the following

section, described as layering servers with clients and server reduction.

8.6.3. Cases for optimising server communication

The compilation scheme described deals with server communication in a uniform way. Analogously
to the special allocation cases of the previous section, the following special cases can be taken
advantage of to simplify the implementation of communication.

175

Chapter 8. Compilation of sire to the UPA

1. A single client. One-to-one client-server relationships are likely to occur in programs that use
process structures that provide an access abstraction with collection of servers to implement a
data structure (server structures of this nature were explained in §7.2.4 [p. 121]).
If the server only ever serves one client, it can either be allocated to the same processor,

so the calls execute locally, or be compiled directly in into the client code as a sequence of
instructions, to remove any inter-process overheads all together.

2. Multiple single clients. Communication with a server that deals with one client at a time can be
implemented with a channel without any additional routines to deal with interrupts.

3. A small number of clients. If a server deals with a small number of clients (i.e. less than the
number of available channel ends), then each client can be assigned a separate channel for
each call so that the client does not need to identify itself every time it makes a call.

4. Server reduction. To perform latency hiding with an array of ‘access’ servers that map one-to-
one to an array of client processes, each processor would be allocated a collection of client
processes suXcient to hide the latency of the server. Since only a fraction of the servers will
be active (proportional to 1/`), the number of server processes can be reduced and shared
between the clients to improve the use of available threads.

5. Layering clients with servers. When the latency of server calls makes it diXcult or impossible
to hide the latency, servers can be allocated with their clients. The eUect of this is that the
processor will either be executing the client, or a server call. With server and client arrays,
provided the behaviour of client components was similar, a similar eUect in the average case
over the array should be observed.

6. Memory access servers. A server that provides direct access to a memory, such as the Store
server listed in Process 7.21 in §7.2.4 [p. 121], could potentially be implemented directly by a
remote memory access mechanism provided by the hardware. The performance beneVts of
doing this are investigated later in Chapter 10 and show a saving of around 20%.

These are just a few ideas, it is likely that there are many more opportunities for interesting
optimisations.

8.6.4. Threading

Inefficient use of threads with parallel replicators

Compilation deals with the creation of new processes (from the parallel command and the on clause),
by mapping them directly to thread resources provided by the hardware. This is suXcient when
the number of available threads per processor is not exceeded, a condition that can be checked
during compilation because of the design of sire. It is likely that a modest number of threads will
suXce for most programs (current implementations of the XS1 architecture have 8 threads per
processor [XMO12b]) but this poses a problem for one aspect of the proposed implementation of sire.

Replicated processes are transformed into a recursive form to distribute the component processes
over a collection of processors rapidly. A consequence of this approach is that with synchronous on
clauses, threads executing on clauses become idle for the duration of the execution of the process
array. For an array of N processes, the processor executing the root node of the distribution tree will
have log2N − 1 idle threads. If, for example, N = 1024, then 9 threads will be idle at the root. This
is clearly an ineXcient use of threads and moderately sized parallel replicators would exceed realistic
implementations of the processor core.
One solution to this would be to implement a simple thread virtualisation scheme whereby a

scheduler manages the execution of an arbitrary number of virtual threads by sharing the available
physical threads. Such a scheme could be specialised to deal only with replicators in order to reduce
the complexity of a full-blown general virtualisation of the processor’s resources.

176

8.6. Discussion

Stack allocation

Allocation of stack space to threads operates by dividing the available stack space into Vxed-sized
chunks. This scheme was chosen for simplicity, but since recursion is not permitted, the stack usage
can be determined at compile time and threads can be allocated exact-size chunks. Allocation is
this way, for example, how the XMOS XC language is compiled [Wat09]. Incorporating exact stack
allocation into the implementation of sire would be straightforward. The stack requirement can be
recorded in the process table and included in process closures for distribution as well as the process
size.
It is worth noting here that it would be possible to relax the constraint on recursive processes to

allow one recursive process per processor. This is because the recursive process can be placed at
the outer-most position of the stack space so that it can grow into the remaining available memory.
To deal with general recursion, stack frames could be allocated on the heap or recursive parallel
programs could be transformed so that each processor contains at most one recursive process, a
suggestion posited by Welch [Wel92].

177

Part III.

EVALUATION OF IMPLEMENTATION COST

AND PERFORMANCE

179

CHAPTER 9.

AN IMPLEMENTATION MODEL FOR THE UPA

programs

sire

compilation

model

UPA

This chapter presents an implementation model, based on current production technology, to in-
vestigate whether the abstraction it provides of the machine structure is eXcient in terms of its
implementation cost, when compared with an equivalent system with a non-universal network.
The proposed model is a straw man in the sense that it is based on general approximations of the

capabilities of current VLSI and packaging technology to obtain rough, but not unrealistic designs. It is
used to evaluate implementation cost and, in particular, how the cost of the interconnection network
scales with respect to processing and memory. The model then forms the basis for a performance
model which is used for the experimental performance evaluation in the next chapter.

9.1. Overview

The UPA is implemented with one or more chips, with each chip containing a complete sub-folded
Clos network with replicated processing tiles, switches and communication links. For multichip sys-
tems, each chip contributes additional switches to form the core switching stage and communication
links connect switches on diUerent chips, in the same way they are connected on-chip. The size of
the chip is chosen to trade-oU between performance and system cost, similar to commodity DRAM.1

The most challenging aspect of the UPA is the density of connectivity between chips that is
required to extend the universal network topology. A silicon interposer is used to do this as it is the
only current production technology that provides the required level of connectivity between chips.
However, in the future, other forms of 3D integration would apply naturally to package these chips
in dense stacks; future technology is discussed brieWy in §9.6.3 [p. 202].

To provide a baseline for the evaluation, an equivalent construction with a (non-universal) 2D mesh
network is presented. This is due to its popularity in the literature and a number of implementations
because it has a simple structure that is amenable to packaging onto a 2D surface. For brevity, in the
remainder of this chapter and the next one, the folded Clos and 2D mesh networks are referred to as
simply Clos and mesh respectively.

9.2. Background

The following sections provide background to some of the aspects of the model: the switch, the
memory technology, the interposer and the wire characteristics.

9.2.1. Switch

The characteristics of the switch component are based on the INMOS C104 chip [MTW93, Ch. 3]
because it was designed to be used as a component for universal communication networks [MTW93,
Ch. 8] and it provides the capabilities required for the UPA including a degree of 32, wormhole
switching and interval routing. Furthermore, its connectivity provides a good match with the
available area of a chip and the size of the system components. A Clos with two stages can connect
up to 256 tiles and this Vts well into the target economical chip area. A 64×64 switch can connect up

1 DRAM chip sizes have remained virtually constant between technology generations in order to maximise cost-
eUectiveness. Current DRAM chips are manufactured with an area of around 100 mm2 with a capacity of
0.3 Gbits [Int12a, pp. 84-104].

181

Chapter 9. An implementation model for the UPA

to 1,024 tiles with two stages, but this far exceeds the target area; a smaller network would have to be
built using this switch that would not fully exploit its connectivity. Figure 9.1 shows some examples
network constructions with a 32×32 switching element for 64, 256 and 1,024 tiles.

9.2.2. Memory technology

The choice of tile memory technology and capacity depends on obtaining a good trade-oU between
access latency, area and its integration with microprocessor logic. Ideally, the access time of a memory
should be matched with the time to execute one operation, but access time is in general inversely
related to capacity, therefore faster memories require more silicon area.
There are two dominant forms of fast random access memory that can be integrated with CMOS

logic: static RAM (SRAM) and embedded dynamic RAM (eDRAM):

• SRAM can be integrated directly, has fast access latency and good random access performance
but it has a relatively low density since it uses six transistors per bit;

• eDRAM is integrated with CMOS logic by adding three to six additional steps to the fabrication
process and is more dense than SRAM (by a factor of 2 to 3) since it uses a single transistor-
capacitor pair to store a bit [Int12c].2

Contemporary commodity dynamic RAM (DRAM) in contrast, is produced on a diUerent manu-
facturing process that is optimised for density and power, and is several technology nodes behind
production logic devices. Consequently, DRAM chips operate at a lower clock frequency and have
long access latencies.3 DRAM is typically packaged on printed circuit board (PCB) modules, called
a dual-inline memory module (DIMM), and connected with wire traces on another PCB, but this
severely constrains the potential bandwidth between chips.

9.2.3. Interposer

Conventional packaging technology poses signiVcant challenges for interconnecting collections of
chips that contain large numbers of processors. A high density ball grid array (BGA) package will
have around 2,000 pins [Int10a, Tab. AP11] and typically around 40% of these have to be used for
ground and power, leaving 1,200 for signals. For bidirectional links with 8 wires in each direction,
only 75 such links could be connected. PCBs oUer a minimum wiring pitch of about 0.15 mm and a
high density package would require around 6 wiring layers to route tracks to each of the pins [Pfe07]
and the resulting density of wiring on the board is low; for instance, 16 links side-by-side would
occupy 38.4 mm. Even for modest numbers of processors, this technology does not provide the
connectivity between chips that is required by a universal communication network. It would require
the number of processors on a single chip to be reduced to match the package pin-out and to connect
them chip-to-chip in three-dimensional space, but this would have signiVcantly increase power and
latency.
It is clear that the construction of general-purpose parallel systems spanning multiple chips

requires an interconnection technology that provides higher density connections. Silicon interposers
are becoming an established technology [KPA+06] that can be used as a substrate to interconnect
multiple processing chips with high-density wiring. In essence, they can be thought of as a high-
density PCB. The interposer can be manufactured on a larger process geometry than the processing
chips since this provides a suXcient wiring density. Larger geometries are higher yield because the
technology is better developed, so it is practical to produce larger die sizes.
2As the technology has matured, the access latency has approached that of SRAM [AGJP11], especially for large
memories where the Wight-time across the array can dominate access latency and the improved density of eDRAM can
signiVcantly reduce this. Its main application has been to build large on-chip caches, replacing SRAM, for example in
the BlueGene/L [IBP+05] and Power7 [BPN+10] chips.

3Although DRAMs have long provided the highest density, it is projected that SRAM will reach the density of standard
DRAM by 2020 and could potentially be a replacement [Hoe12], due to problems scaling capacitors.

182

9.2. Background

s0

s1

s2

s3

s4

s5

6 86
16

(a) 64 tiles

s0

s1

s15

...

s16

s17

s23

...

6 16
16

(b) 256 tiles

s0

s1

s1

s16s0

s17s1

s31s15

...
...

6
16

s4

s4

s5

s35

...

6 86
256

(c) 1,024 tiles

Figure 9.1.: Example 32×32 crossbar switch topologies for various size Clos networks. Edge switches connect
to 16 tiles and core switches use all 32 links to connect to the previous stage. The 1,024-tile
network is constructed by replicating a 256-tile network four times and connecting it with 32 core
switches, making it three-stage. This construction maintains capacity between stages and has a
logarithmic diameter (2 or 3 for the examples) in the number of tiles.

Xilinx use a 65 nm 776 mm2 silicon interposer in their Virtex-7 FPGA [Sab11], which was available
in 2011, to connect four 28 nm FPGA ‘slices’. This was the Vrst production device to do so, with the
principal reason to do this being an economic one. At a cutting edge 28 nm process technology4

yields are lower, so producing a number of identical smaller devices and connecting them with an
interposer to produce a single larger device provides a good trade-oU between cost and performance.
The same philosophy is taken with the proposed implementation model and the characteristics of the
Xilinx interposer are used as a basis for it.

9.2.4. Wires

The logic and wiring resources provided by VLSI devices are plentiful and they continue to scale but
their utilisation is signiVcantly limited by two factors: one is the connectivity of packages that was
discussed in the previous section and two, the performance of long wires (relative to the size of a
chip) in terms of delay and power [HMH01].
There are techniques for implementing power-eXcient global interconnections such as low-

swing signalling schemes [HMH03] and optimisation of wire width and spacing [LMHL05], but an
unavoidable eUect of the scaling of VLSI devices is that wire delays exceed a single clock cycle. This
makes modular parallel architectures that can tolerate these latencies an attractive way to build
systems [Ho03], and adds weight to the general approach proposed in this thesis.
Wire delay is related to the square of the length of the distance a signal is transmitted. Long

wires are therefore unattractive. A conventional technique to reduce wire delay is to insert repeating
elements at regular intervals along a wire [IF99], [Ho03, Chap. 4]. This reduces the total delay to
a multiple of the delay between repeaters, at optimal intervals, this produces a linear relationship
between delay and length. The cost of this is the delay through the repeaters and the logic area and
power required for them.

4The process technology or process geometry of a chip refers to the minimum half pitch of contacted metal lines, as deVned
by the ITRS [Int12a, pp. 5-6], which is the minimum feature size of a circuit. This has historically been an indicator of
IC scaling and it has been DRAM that has exhibited the smallest metal pitch.

183

Chapter 9. An implementation model for the UPA

9.3. Implementation model

The following sections describe the components of the model and discuss the layouts of the processing
chip for the Clos and mesh topologies, and the chip layout and wiring for the interposer chip. The
layouts are used to estimate area requirements and wire delays. The parameters of the model are
described in §9.4 [p. 186] and summarised in Table 9.1 and Table 9.2.

9.3.1. VLSI model

The following VLSI model is used to produce a Woorplan for the chip and is based on those in Mead
and Conway [MC80] and Ullman [Ull84].

Metal layers

• A chip consists of a number of metal layers. Metal layer 1 (M1) is used for logic components
and the remaining metal layers M2, M3, M4 etc. are used to route wires.

• A particular metal layer contains wires orientated in one direction and adjacent metal layers
contain wires in perpendicular directions. This is to reduce crosstalk, where a signal in one
circuit aUects the signal in another circuit.

Wires

• Wires carry signals in one direction and all wires are half shielded to further reduce crosstalk.
This is where a ground wire is placed either side of a wire pair. The result is that minimum
wire pitch increases by a factor of 3

2 .

• All wires have repeaters inserted to minimise latency.

• Wires with multicycle delays are pipelined by inserting Wip-Wops.

• For sets of wires, banks of repeaters and Wip-Wops are required. To simplify their insertion,
interconnect wires are routed in dedicated channels.

Chip

• The area of a chip is taken to be the smallest rectangle in which the complete circuit Vts.

• External connections are made to pads with a Vxed driver circuit component. This is due to the
higher capacitance of external wires.

9.3.2. Chip layout

A UPA processing chip contains a collection of tiles and switches that can be used by itself or as a
sub-component to build a larger system. A chip presents a number of external links from its switches
and multiple chips are connected by joining links between switches in diUerent chips according to
the interconnection topology, thereby extending the network.
VLSI layouts of the architecture with Clos and mesh networks are described. These are not

speciVed rigorously since the explanations are relatively simple and the model aims only to produce
ball-park estimates. Software models of these layouts are used to produce Vgures for the dimensions
of chips and their components and wire lengths. These Vgures are then combined and compared to
show the relative proportions of processors and memory to switches and interconnect wiring.

184

9.3. Implementation model

Assumptions and limitations

To avoid over-complicating the model, only the following essential aspects of the system are captured
in the layout:

• the only components included in the layout are the processor core, memory, switch, pad driver
circuitry and IO pads (internal component wiring is not considered);

• only the routing of the inter-switch and switch to chip IO wiring is considered since this is the
most signiVcant component of the system in terms of wire lengths and density;

• the remaining communication links between switches and processors are not explicitly ac-
counted for in the area; it is assumed they can be routed over other resources, in the area not
occupied by the interconnect wiring channels;

• links are connected between components and it is assumed they can be connected from any
position within the footprint of a component;

• layout relating to wiring and IO for power and clock signals is not considered, but provision is
made for them in the available metal layers and chip IO.

Clos layout

A UPA processing chip contains a complete Clos network connecting a collection of tiles with two
or more stages, banks of unconnected switches that are contributed to the core-stage of a larger
multi-chip network and driver circuitry for oU-chip IO. The layout of the Clos network has a recursive
structure and is based on a H-tree, an eXcient embedding of a binary tree onto a 2D surface [MC80,
Ch. 8]. An example layout for a 2-stage 256-tile Clos network relating to the topology of one of the 4
sub-Clos networks in Figure 9.1c is given in Figure 9.2a.
All of the links from the system core switches are routed to oU-chip pads since the connections

between the core switches and the chip’s core switches depends on the size of a network. This is so
that they can be connected to the correct corresponding switches for a particular network size, both
on the same chip and in core switch banks of other chips. The core switches of the sub-Clos are placed
in the centre of the chip and half of the links are routed to the oU-chip IO. The next stage of switches
in is divided into four groups and each are placed in the centre of a quadrant surrounding the core
switches. Connections are made from all of the core switches to each of the next stage switches. This
process continues recursively in each quadrant for each additional stage. The minimum separation
of groups of tiles is constrained by the placement of switches and the width of the wiring channels
between them.

Groups of switches are arranged in staggered sets to minimise the resulting size of their bounding
box. Their placement relative to one another is constrained in two dimensions by the pitch of wires
connecting horizontally and vertically. These are routed on a minimum of two metal layers, but
additional layers can be used to reduce the dimensions of a group. Each group of switches has
branching connections in both directions. This restricts both the horizontal and vertical placement
of switches. A switch arrangement is chosen to minimise the width of the group subject to not
exceeding the height of its quadrant since it can extend into the wiring channel. An example of the
wiring pattern for a switch group is illustrated in Figure 9.2a. The total area of the interconnect is
calculated as the sum of the area of the wiring channels and all of the switch groups.
The pads and driver circuitry for oU-chip IO are positioned along one edge of the chip due to the

wiring pattern on the interposer. A chip that contains N tiles requires IO for 2N links to extend the
network, N from the core switches and N from the contributed bank of system core switches.

Mesh layout

A mesh network is laid out as an array of blocks of processors where each block of processors
attaches to a single switch. These are separated by wiring channels accommodating the width and

185

Chapter 9. An implementation model for the UPA

height of a switch, which is placed at the corner of its block. Adjacent horizontal and vertical links
connect directly between switches. The layout for a 256 tile mesh network is given in Figure 9.2b.

The pads and driver circuitry for the oU-chip IO are positioned at the edges of the chip so that the
mesh can be extended directly between adjacent chips. A chip that contains N tiles requires IO for
4
√
N − 4 links to extend the network.

9.3.3. Silicon interposer

The processing chips are mounted on a silicon interposer using a Wip-chip assembly. This bonds
the top side of the chip with an array of solder microbumps. The interposer provides wiring traces
between the microbumps to connect links between switches on diUerent chips. The interposer is
connected to a package substrate with through-silicon vias (TSVs) that provide a connection through
the interposer’s substrate to controlled collapse chip connection (C4) Wip-chip bumps on the package
substrate. These connections only bridge the power, ground and clocking IOs. The package substrate
carries these connections out of the package, to the BGA balls.
For a Clos topology, a set of chips are arranged in two rows, either side of a wiring channel on

the interposer, orientated with their wiring area closest to this. Each wire in the channel is used to
connect between pads on two chips with additional horizontal wires. The wiring channel contains
suXcient wires so that every pair of connections between the chips can be made. The maximum
height of the channel between two chips is therefore twice the total pitch of the wires connecting a
chip. For a mesh topology, connections are provided on the interposer between the links of adjacent
chips, directly extending the mesh. In both networks, wiring for power, ground and clock signals
are not included, but there is suXcient space in other areas of the chip. Figure 9.4 illustrates the
packaging of a set of processing chips stacked on the silicon interposer for both networks.

9.4. Model parameters

This section presents and explains the parameters used to characterise current production technology
for the implementation model. The International Technology Roadmap for Semiconductors (ITRS), a
set of documents produced annually by a broad collection of industry members since 1994, provides
many of these; others are taken from elsewhere in the literature or estimated. Table 9.1 summarises
the parameters for the processing chip and Table 9.2 summarises the parameters for the interposer.

The remainder of this section is divided into the parameters of the processing and interposer chips,
the main VLSI components the memories.

9.4.1. Processing chip and interposer

The parameters for the processing chip are based on a 28 nm logic process technology, which is
representative of current production devices [Int12a, Tab. OCTC-2C]. The chip IO pad area includes
the contact and driver circuitry and its dimensions are estimated based on a 1 to 4 ratio between
width and height which is characteristic of conventional designs [WM05]. The width is taken to
be the pitch of the interposer contacts (microbumps). An on-chip processor and interconnect clock
rate of 1 GHz is chosen as this is typical of an embedded processor. The parameters for the silicon
interposer and packaging are based on the Xilinx Virtex 7 FPGA [Jon10, Sab11, Ram11], however it is
assumed that wires can be repeated.
All links between switch components on the processing chip have 9 wires in each direction,

allowing up to 1 byte to be transmitted per cycle with an additional bit to signal control tokens. All
oU-chip links have 5 wires in each direction, allowing up to 1 byte to be transmitted every 2 cycles.
This is to reduce the oU-chip IO requirements and interposer wiring.

186

9.4. Model parameters

tile

wiring channel

stage 2 switch group

stage 3 switch bank
IO driver

branching switch group

(a) Clos layout

tile

switch

wiring channel

IO drivers

(b) mesh layout

Figure 9.2.: Block diagrams of the 256-tile Clos and mesh network layouts for the UPA processing chip. In
these, groups of 16 tiles connect to a single switch. In (a), the topology corresponds to one of the
four sub-Clos networks in Figure 9.1c. The layout is based on a H-tree organisation with groups
of switches at each node organised in staggered sets to minimise area subject to the constraints of
their vertical and horizontal connections. Running along the right hand side of the chip is driver
circuitry for each chip IO pads. Connections from switches to processors and IOs for power and
ground are not included in the model. In (b), running around the edge of the chip is the diver
circuitry for each of the chip IO pads. Connections from switches to processors and IOs for power
and ground are not included in the model.

187

Chapter 9. An implementation model for the UPA

package substrate

package substrate

through-silicon via

microbump

C4 bump

chip
interposer

BGA ball

Figure 9.3.: Cut through view of the packaging. A collection of chips are stacked using a Wip-chip assembly
onto solder microbumps, connecting them to a silicon interposer which provides dense connectiv-
ity between them. The interposer contains TSVs to provide connectivity though its substrate and
these are connected with C4 solder bumps to the package substrate.

chip 1

chip 2

chip 3

chip 4

(a) Clos layout

chip 1 chip 3

chip 2 chip 4

(b) mesh layout

Figure 9.4.: Chip layouts on the interposer. For the Clos network, chips are located beside a wiring channel
that contains a common wire for every connection between two chips. A connection is made
by connecting horizontal wires from each chip to the common wire; diagram (a) shows a wiring
pattern for connections from each chip to every other chip. For the mesh, in diagram (b), chips
are arranged in a grid and the network is extended directly between chips.

The delay of an optimally repeated wire can be estimated with the equation

τ = 1.47
√

FO4 · R̂Ĉ

where τ is the delay in picoseconds per unit length; R̂Ĉ is a time constant equal to the product of
the resistance per unit length and the capacitance per unit length; and FO4 (fanout-of-4) delay is a
constant related to the particular process technology, deVned as the delay of an inverter, driving
four identical copies of itself (see [Ho03, §2.2] for more details). This approximation is based on the
derivation by Bakoblu [Bak90] and follows the explanation by Ho [Ho03, §4.2]. The FO4 delay is
estimated for a particular process geometry using the heuristic FO4 = 360 · f , where f is the feature
size in µm, producing a delay in ps [HMH01].
The ITRS provide Vgures for RC delay, which are summarised for a range of process geometries

in Table 9.3; their method of calculation for the RC delay is described in [Int12b, §7.3]. The M1
half pitches of 68 nm and 26.76 nm are the closest matching geometries of the processing chip and
interposer respectively and the data for them are taken to estimate wire delay. Using these Vgures
and the above formula for wire delay yields 155 ps/mm for the 28 nm processing chip and 89 ps/mm
for the 65 nm interposer chip.

188

9.4. Model parameters

Parameter Value Note

Process geometry 28 nm 2013 prediction [Int12a, Tab. OCTC-2C]
FO4 delay 11 ps see §9.4.1 [p. 186]

Economical chip sizes
80 mm to
140 mm2 cost-performance processor [Int12a, Tab. ORTC-2C]

Metal layers 8 M1 logic; M2, 7 & 8 power & clock; M3-M6 wiring
Interconnect wire pitch 125 nm for the global interconnect [Int12b, Tab. INTC6]
Repeated wire delay 155 ps/mm see §9.4.1 [p. 188]
Processor area 0.10 mm2 see §9.4.2 [p. 190]
Switch area 0.05 mm2 see §9.4.2 [p. 190]
IO pad dimensions 45 × 225 µm see §9.4.1 [p. 186]
Wires per link 18 1 control, 8 data per direction, see §9.4.1 [p. 188]
Clock rate 1 GHz see §9.4.1 [p. 186]

Table 9.1.: Parameters for the processing chip model.

Parameter Value Note

Process geometry 65 nm †
FO4 delay 24 ps see §9.4.1 [p. 186]
Metal layers 4 †, M1 & M2 power & ground; M3 & M4 wiring
Interconnect wire pitch 2 µm †, 333 half-shielded wires/mm
Repeated wire delay 89 ps/mm see §9.4.1 [p. 188]
Microbump pitch 45 µm †, 493.83 bumps/mm2

TSV pitch 210 µm †, 22 TSVs/mm2

C4 bump pitch 210 µm †, 22 bumps/mm2

Wires per link 10 1 control, 4 data per direction, see §9.4.1 [p. 188]

Table 9.2.: Parameters for the interposer. † parameters based on Xilinx Virtex 7 FPGA package [Ram11],
which integrates 4 28 nm FPGA ‘slices’ on a 775 mm2 interposer.

Process
geometry (M1 1

2
pitch)

Minimum global
wire pitch (nm) RC delay (ps/mm) ITRS edition

150 670 not given 2001 [Int01]
90 300 96 2005 [Int05]
68* 210 168 2007 [Int07]
45 154 385 2010 [Int10b]

37.84 114 621 2011 [Int11]
26.76* 81 1,115 2012 [Int12b]

Table 9.3.: ITRS data for global wires. The rows marked with a * are the ones used to determine the wire delay
for the processing chip and interposer.

189

Chapter 9. An implementation model for the UPA

Type
Typical
capacity
(MB)

Cell area
factor
(F 2)

Area
eXciency

Current
process
geometry

(nm)

Density
(KB/mm2)

Cycle
time
(ns)

SRAM <8 140 70% 28 778.51 0.5
eDRAM 1 - 64 50 60% 28 1,868.42 1.3

Comm-DRAM >64 6 60% 40a 7,629.39 30b

Table 9.4.: Comparison of contemporary memory technologies, with Vgures from the 2012 ITRS report [Int12c,
Tab. SYSD3a]. The area factor is a multiple of square half pitch units, the number given by the
process geometry. The area eXciency is the proportion of area in a memory array that is occupied
by storage cells.

aAlthough not reported by the ITRS, high volume commodity DRAM lags commodity logic by several process geometries.
bRandom cycle time (tRC) from a 1Gb Micron DDR3 device [Mic12a].

Type Capacity (KB) Area (mm2)

SRAM 64 0.082
SRAM 128 0.164
SRAM 256 0.329
SRAM 512 0.658

eDRAM 128 0.069
eDRAM 256 0.137
eDRAM 512 0.274
eDRAM 1024 0.548

Table 9.5.: Selected memory capacities of SRAM and eDRAM.

9.4.2. Processor and switch components

The area A of a component at a process geometry g is estimated for a diUerent geometry h by
applying a linear scaling Ah = Ag/(g/h)2 where g ≥ h. The area of the XCore processor on a 90 nm
process is estimated to be 1 mm2; on a 28 nm process it is estimated to be 0.10 mm2. The area of the
C104 switch on a 1 µm process was approximately 40 mm2; on a 28 nm process, it is estimated to be
0.03 mm2.

These Vgures are consistent with the ARM Cortex-M0 processor [ARM12b] and the 32×32 SWIFT
switch [SDTO+11]. The Cortex-M0 is a simpler processor than the XCore which has a 3-stage
pipeline and supports only a single hardware thread. On a 40 nm process it has an area of 0.01 mm2

and on 28 nm an estimated area of 0.003 mm2. The SWIFT switch has an area of 0.35 mm2 on a 65 nm
process and an estimated area of 0.06 mm2 on 28 nm.

9.4.3. Memory

The area and access latency of memory for processing tiles is estimated using requirements data
from the ITRS [Int12c, Tab. SYSD3a]. Table 9.4 gives the key characteristics of the dominant forms
of memory technology, of which SRAM and eDRAM are potential choices for an implementation.
Figures for SRAM and eDRAM are given for 28 nm in line with the processing chip; 40 nm DRAM is
included as a baseline, which is characteristic of contemporary commodity devices.
Although density, and in particular, cycle time (the time to perform a random access) will vary

with capacity and process technology, typically, memory capacity increases with process technology
and these remain roughly constant between generations. In general, eDRAM is 2 to 3 times the
density of SRAM and 4 to 5 times less dense than commodity DRAM. SRAM cycle time is around

190

9.5. Cost and scaling

three times faster than eDRAM and commodity DRAM cycle time is much higher because of the
specialised process on which it is produced.

Table 9.5 shows several capacities of tile memory for SRAM and eDRAM. These are selected to be
similar to the area of the processor, to investigate the relative trade-oUs between them.

9.5. Cost and scaling

In this section, the implementation cost and scaling with the number of tiles for various system
conVgurations is investigated. It Vrst looks at the general properties of the Clos and mesh networks
and then at the cost of diUerently sized systems and memory capacities. Finally, several potential
economical (cost-performance) chip conVgurations are selected and systems comprising a collection
of these are outlined.
The Vgures presented are produced from the calculation of speciVc instances of the chip layouts

for the chosen technology parameters and over particular ranges.

9.5.1. Inherent scalability of the topologies

A mesh is much less well connected than a Clos, which reduces the cost of implementation but
signiVcantly limits its capability and scalability. Figures 9.5 and 9.6 demonstrate how these competing
aspects scale for the two networks, over a range of system sizes appropriate for the implementation.
A measure of the implementation cost is obtained from the total number of switches and links in

the network. The diameter and bisection size are also presented. For a universal communication
network connecting N tiles, with diameter d and a universal routing strategy to evenly distribute
communication traXc, the network capacity must be at least Ω(Nd) and the bisection size at least
Ω(N), in order to provide scalable per-processor throughput (see §4.1.7 [p. 53] for the properties
required of a universal network).
The number of switches and links grows linearly with the number of tiles for the mesh and the

capacity therefore grows more slowly than the potential amount of communication traXc that can
be generated by the nodes. This is reWected in the bisection size. As the size of the network increases,
so to does the gap between potential traXc and capacity and this is exacerbated by a faster-growing
O(
√
N) diameter as messages take longer to reach their destination.

The capacity per node scales logarithmically with the Clos, matching the diameter and the potential
amount of evenly distributed communication traXc. Another way to look at this is that the provision
for each tile in the mesh is a single switch and Θ(1) links, and the provision for each tile in the Clos
is Θ(logN) switches and Θ(logN) links. For the systems presented, the diameter of the Clos scales
from 4 in a 2-stage network at 64 tiles, to 6 in a 3-stage network at 8,192 tiles and the capacity and
bisection bandwidth are maintained. The mesh in comparison, has a diameter that matches the Clos
at 64 tiles, but grows to nearly ten times that of the Clos at 8,192 tiles with a capacity and bisection
size both around 4% of that required for constant throughput per node.

9.5.2. Area and wire delay

Of the processing chip

Figure 9.7 shows how the total chip area scales with the number of tiles, with diUerent capacities of
SRAM and eDRAM. Horizontal lines are drawn to mark the range of cost-performance chip sizes
(80 mm2 to 140 mm2). Table 9.6 lists the chips that fall in this range with their dimensions and
proportions of processing, interconnect and IO. This highlights a 30% to 40% interconnect overhead
in the Clos-based system compared to the mesh.

Tables 9.7 and 9.8 list the length of interconnect wires and their delays in both chips. For the Clos,
these are listed for the diUerent stages of the topology and they vary from less than 1 ns on 3 mm to

191

Chapter 9. An implementation model for the UPA

5 mm wires and between 1 ns and 2 ns on 5 mm to 10 mm wires. For the mesh, wire lengths between
switches vary from 1.5 mm to 3.5 mm with delays less than 1 ns.

Of the components of the processing chip

Figure 9.8 shows the total area of the switch, wire and IO components of the chip as a percentage of
the total area. This shows how they scale with respect to the number of components they connect,
highlighting the diUerence between the Clos and the mesh in the rate network resources are invested
with increasing size. Wire areas for systems with 64 KB and 512 KB SRAM memories are included to
show the variation between the smallest and largest memory area.
The total switch area in the Clos is calculated as the total area occupied by the switch groups.

Although the number of switches and links per-tile is proportional to the number of stages and
the growth of additional components is logarithmic in the number of tiles, the area grows more
quickly than this due to the increasing ineXciency of larger switch groups. The IO remains relatively
constant per tile. Overall, for the cost-performance chips, the interconnect occupies between 5% and
10% of the die area.
In the mesh, switch area remains constant per tile and the wire grows slowly because of the

decreasing ratio of switches on the edges of the mesh to those in the middle. The proportion of IO
diminishes as the number of tiles increases since the number of external connections diminishes
relative to the number of tiles. Overall, for the cost-performance chips, the mesh interconnect
occupies 2% to 3% of the die area.

Of the interposer

Tables 9.9 and 9.10 list potential systems that can be constructed by integrating the cost-performance
chips listed in Table 9.6 on a silicon interposer. For the Clos system, this lists the percentage area
occupied by the wiring channel (between 2% and 50%) and the minimum and maximum wire delays
(1 ns to 10 ns). These correspond to the width and the width plus the height of the channel. For the
mesh, the wire delay is a constant 0.09 ns for all systems since the chips are tiled and the distance
between adjacent pads is Vxed. The plots in Figure 9.9 summarise the systems presented in the tables
with the total area of the interposer.

From the systems listed in Tables 9.9 and 9.10, one SRAM and one eDRAM conVguration is selected
for either network that provides a good trade-oU between the number of processors and the total
amount of memory. These are used for the performance evaluation in the next chapter.

9.5.3. Summary

The cost of a universal Clos interconnect on-chip is around 10% of the available area, and oU-chip,
using silicon interposers to provide high density wiring, it is around 30% of the interposer area. In
the system overall, this represents a 20% to 30% investment in a universal interconnect, compared to
around 5% with a mesh network.

Is this then a reasonable price to pay? On the one hand, it is unavoidable since universal communi-
cation networks are essential to provide structural independence and therefore a general-purpose
system and the results presented indicate that, even with current technology, these costs are not
excessive. On the other hand, it seems almost obvious that a signiVcant proportion of the operation
of a large number of processors with Vne-grained communication will be concerned with moving
data between processors. Therefore, an investment of only 5% of a machine’s resources towards this
aspect does not correspond well to the demands placed on it.

192

9.5. Cost and scaling

0
200
400
600
800
1000
1200
1400
1600

64 128
256

512
1024

2048
4096

8192

Sw
it
ch
es

Tiles

Clos mesh

(a) switches

0
5
10
15
20
25
30
35
40
45
50

64 128
256

512
1024

2048
4096

8192

D
ia
m
et
er

Tiles

Clos mesh

(b) diameter

Figure 9.5.: Log-linear plots showing how the number of switches (a) and network diameter (b) scales as
system size increases for the Clos and mesh networks built with 32× 32 crossbar switches.

10

100

1000

10000

100000

64 128
256

512
1024

2048
4096

8192
Tiles

Total capacity
Bisection size
Ideal capacity
Ideal bisection size

(a) Clos

10

100

1000

10000

100000

1e+06

64 128
256

512
1024

2048
4096

8192
Tiles

Total capacity
Bisection size
Ideal capacity
Ideal bisection size

(b) mesh

Figure 9.6.: Log-log plots showing how the capacity (the total number of links in the network) and bisection
size scales for Clos and mesh networks built with 32× 32 crossbar switches. The ‘ideal’ values of
these are the requirements of a universal network with constant throughput-scaling per node.

193

Chapter 9. An implementation model for the UPA

0

100

200

300

400

500

600

64 128 256 512

A
re
a
(m

m
2
)

Tiles

64 KB
128 KB

256 KB
512 KB

(a) Clos SRAM

0

100

200

300

400

500

600

64 128 256 512

A
re
a
(m

m
2
)

Tiles

64 KB
128 KB

256 KB
512 KB

(b) mesh SRAM

0

100

200

300

400

500

600

64 128 256 512

A
re
a
(m

m
2
)

Tiles

128 KB
256 KB

512 KB
1024 KB

(c) Clos eDRAM

0

100

200

300

400

500

600

64 128 256 512

A
re
a
(m

m
2
)

Tiles

128 KB
256 KB

512 KB
1024 KB

(d) mesh eDRAM

Figure 9.7.: Log-linear plots of the total chip area as a function of the numbers of tiles. The grey horizontal
lines indicate the range of economical (cost-performance) chip sizes, from 80 mm2 to 140 mm2.

194

9.5. Cost and scaling

0

2

4

6

8

10

12

64 128 256 512

A
re
a
(%

of
di
e)

Tiles

Switches
Wire (128 KB eDRAM)
Wire (512 KB SRAM)
IO

(a) Clos

0

1

2

3

4

5

6

64 128 256 512

A
re
a
(%

of
di
e)

Tiles

Switches
Wire (128 KB eDRAM)
Wire (512 KB SRAM)
IO

(b) mesh

Figure 9.8.: Log-linear plots of the total area of the switches and wiring components as a percentage of the
total die area. Switch area is calculated as the sum of the switch group area in the Clos. This
adds an overhead to the otherwise logarithmic scaling of switch and wire area. Both components
remain constant in the mesh, apart from a small convergent growth in the wire area due to a
decreasing ratio of switches on the edges of the mesh to those in the middle.

195

Chapter 9. An implementation model for the UPA

Num.
tiles

Mem.
type

Tile
mem.
(KB)

Total
mem.
(MB)

Chip dims.
(mm)

Processing
area (%)

Intercon-
nect area

(%)

IO area
(%)

Clos
256 SRAM 64 16 10.40 × 8.51 52.71 8.42 30.27
256 SRAM 128 32 11.34 × 9.91 60.21 7.64 23.78
128 SRAM 512 64 8.10 × 15.15 79.01 5.12 11.09
256 eDRAM 128 32 10.13 × 8.25 51.59 8.66 31.02
256 eDRAM 256 64 11.13 × 9.47 57.55 7.81 26.22

128 eDRAM 1024 128 7.80 × 14.11 75.37 5.34 14.40

mesh
512 SRAM 64 32 7.98 × 15.50 75.44 1.81 7.86
256 SRAM 128 32 9.38 × 9.38 77.00 1.37 7.37
256 SRAM 256 64 11.63 × 11.63 81.22 1.02 4.79
128 SRAM 512 64 7.77 × 15.07 82.84 0.64 4.15
512 eDRAM 128 64 7.72 × 14.98 74.65 1.90 8.41
256 eDRAM 512 128 10.93 × 10.93 80.10 1.11 5.42
128 eDRAM 1024 128 7.24 × 14.03 81.65 0.70 4.78

Table 9.6.: Chip conVgurations that lie in an economical (cost-performance) range of areas, as illustrated by
Figure 9.7.

Num.
tiles

Mem.
type

Tile mem.
(KB)

Tile to stage-1
wire Stage 1 to 2 wire Stage 2 to

oU-chip wire

256 SRAM 64 3.51 mm/0.57 ns 7.26 mm/1.18 ns 7.82 mm/1.27 ns
256 SRAM 128 4.21 mm/0.69 ns 8.65 mm/1.41 ns 9.22 mm/1.50 ns
128 SRAM 512 7.06 mm/1.15 ns 10.87 mm/1.77 ns 11.15 mm/1.81 ns
256 eDRAM 128 3.38 mm/0.55 ns 7.00 mm/1.14 ns 7.56 mm/1.23 ns
256 eDRAM 256 3.99 mm/0.65 ns 8.22 mm/1.34 ns 8.78 mm/1.43 ns
128 eDRAM 1024 6.54 mm/1.06 ns 10.08 mm/1.64 ns 10.36 mm/1.69 ns

Table 9.7.: Global wire lengths and their delays for the selected Clos chips.

Num. tiles Mem.
type

Tile mem.
(KB) Switch-to-switch wire

512 SRAM 64 1.71 mm/0.28 ns
256 SRAM 128 2.06 mm/0.33 ns
256 SRAM 256 2.62 mm/0.43 ns
128 SRAM 512 3.48 mm/0.57 ns
512 eDRAM 128 1.64 mm/0.27 ns
256 eDRAM 512 2.45 mm/0.40 ns
128 eDRAM 1024 3.22 mm/0.52 ns

Table 9.8.: Global wire lengths and their delays for selected mesh chips.

196

9.5. Cost and scaling

Num.
chips

Total
procs.

Total
mem.
(MB)

Interposer dims.
(mm)

Interposer
wiring area

(%)

Min.
wire
delay
(ns)

Max.
wire

delay (ns)

256 tiles/chip, 64 KB SRAM/tile
2 512 32 24.64 × 8.51 14.06 0.36 1.08
4 1024 64 28.48 × 17.02 24.34 0.72 2.16
8 2048 128 36.16 × 34.04 38.33 1.44 4.31

16 4096 256 51.52 × 68.08 53.81 2.88 8.63

256 tiles/chip, 128 KB SRAM/tile
2 512 64 26.52 × 9.91 11.22 0.36 1.08
4 1024 128 30.36 × 19.82 19.60 0.72 2.16
8 2048 256 38.04 × 39.64 31.29 1.44 4.31

16 4096 512 53.40 × 79.28 44.58 2.88 8.63

128 tiles/chip, 512 KB SRAM/tile
2 256 128 18.12 × 15.15 2.69 0.18 0.54
4 512 256 20.04 × 30.30 4.86 0.36 1.08
8 1024 512 23.88 × 60.60 8.15 0.72 2.16
16 2048 1024 31.56 × 121.20 12.34 1.44 4.31

256 tiles/chip, 128 KB eDRAM/tile
2 512 64 24.10 × 8.25 14.83 0.36 1.08
4 1024 128 27.94 × 16.50 25.59 0.72 2.16
8 2048 256 35.62 × 33.00 40.14 1.44 4.31
16 4096 512 50.98 × 66.00 56.10 2.88 8.63

256 tiles/chip, 256 KB eDRAM/tile
2 512 128 26.10 × 9.47 11.93 0.36 1.08
4 1024 256 29.94 × 18.94 20.80 0.72 2.16
8 2048 512 37.62 × 37.88 33.11 1.44 4.31

16 4096 1024 52.98 × 75.76 47.02 2.88 8.63

128 tiles/chip, 1024 KB eDRAM/tile
2 256 256 17.52 × 14.11 2.98 0.18 0.54
4 512 512 19.44 × 28.22 5.38 0.36 1.08
8 1024 1024 23.28 × 56.44 8.98 0.72 2.16
16 2048 2048 30.96 × 112.88 13.50 1.44 4.31

Table 9.9.: Potential multi-chip Clos system conVgurations integrated on a silicon interposer. The minimum
and maximum wire delays are based on the width and the width plus the height respectively of
the wiring channel. Delays are shared between diUerent systems with the same number of tiles
per chip, since the pitch of oU-chip wires is greater than the dimension of the chip and so they
are separated along the channel with gaps. The highlighted systems are used for performance
evaluation in the next chapter.

197

Chapter 9. An implementation model for the UPA

Num. chips Total procs. Total mem.
(MB)

Interposer dims.
(mm)

Wire delay
(ns)

512 tiles/chip, 64 KB SRAM/tile
2 1024 64 7.98 × 31.00 0.09
4 2048 128 15.96 × 31.00 0.09
8 4096 256 15.96 × 62.00 0.09

16 8192 512 31.92 × 62.00 0.09

256 tiles/chip, 128 KB SRAM/tile
2 512 64 9.38 × 18.76 0.09
4 1024 128 18.76 × 18.76 0.09
8 2048 256 18.76 × 37.52 0.09

16 4096 512 37.52 × 37.52 0.09

256 tiles/chip, 256 KB SRAM/tile
2 512 128 11.63 × 23.26 0.09
4 1024 256 23.26 × 23.26 0.09
8 2048 512 23.26 × 46.52 0.09
16 4096 1024 46.52 × 46.52 0.09

128 tiles/chip, 512 KB SRAM/tile
2 256 128 7.77 × 30.14 0.09
4 512 256 15.54 × 30.14 0.09
8 1024 512 15.54 × 60.28 0.09

16 2048 1024 31.08 × 60.28 0.09

512 tiles/chip, 128 KB eDRAM/tile
2 1024 128 7.72 × 29.96 0.09
4 2048 256 15.44 × 29.96 0.09
8 4096 512 15.44 × 59.92 0.09

16 8192 1024 30.88 × 59.92 0.09

256 tiles/chip, 512 KB eDRAM/tile
2 512 256 10.93 × 21.86 0.09
4 1024 512 21.86 × 21.86 0.09
8 2048 1024 21.86 × 43.72 0.09
16 4096 2048 43.72 × 43.72 0.09

128 tiles/chip, 1024 KB eDRAM/tile
2 256 256 7.24 × 28.06 0.09
4 512 512 14.48 × 28.06 0.09
8 1024 1024 14.48 × 56.12 0.09
16 2048 2048 28.96 × 56.12 0.09

Table 9.10.: Potential multi-chip mesh system conVgurations integrated on a silicon interposer. In all of the
conVgurations, a 1 mm separation between is assumed between the pads of adjacent chips, leading
to a constant wire-delay value. The highlighted systems are used for performance evaluation in
the next chapter.

198

9.5. Cost and scaling

0
500
1000
1500
2000
2500
3000
3500
4000
4500

256 512 1024 2048 4096

A
re
a
(m

m
2
)

Tiles

128 tiles/chip, 512 KB/tile
256 tiles/chip, 64 KB/tile
256 tiles/chip, 128 KB/tile

(a) Clos SRAM systems

0
500
1000
1500
2000
2500
3000
3500
4000
4500

256 512 1024 2048 4096

A
re
a
(m

m
2
)

Tiles

128 tiles/chip, 1024 KB/tile
256 tiles/chip, 128 KB/tile
256 tiles/chip, 256 KB/tile

(b) Clos eDRAM systems

0

500

1000

1500

2000

2500

256 512 1024 2048 4096

A
re
a
(m

m
2
)

Tiles

512 tiles/chip, 64 KB/tile
256 tiles/chip, 128 KB/tile
256 tiles/chip, 256 KB/tile
128 tiles/chip, 512 KB/tile

(c) mesh SRAM systems

0

500

1000

1500

2000

2500

256 512 1024 2048 4096

A
re
a
(m

m
2
)

Tiles

512 tiles/chip, 128KB/tile
256 tiles/chip, 512KB/tile
128 tiles/chip, 1024KB/tile

(d) mesh eDRAM systems

Figure 9.9.: Log-linear plots of the total area of the interposer for diUerent types and numbers of processing
chips for the Clos and mesh networks with both SRAM and eDRAM memories, summarising the
systems listed in Tables 9.9 and 9.10.

199

Chapter 9. An implementation model for the UPA

Processor

Dhrystone
performance

(DMIPS/MHz per
core)

Process
geometry

(nm)
Area (mm2)

Normalised
area (at
40 nm)

Intel Sandy Bridge 7.50 32 ∼15 >1,000
ARM Cortex A9 2.50 65 <1.5 57
XMOS XS1-L 0.96 90 <1 20
ARM Cortex M0 0.84 40 <0.01 1

Table 9.11.: A comparison of area and sequential capability of diUerent processors. DMIPS are Dhrystone MIPS,
the score obtained from the integer Dhrystone benchmark [Wei84] divided by 1,757, which is the
score obtained by the VAX 11/780, a 1 MIP machine [Yor02]. Extrapolation to diUerent process
geometries is done with a linear scaling. The comparison does not consider the width of data
paths or additional functionality such as vector units.

9.6. Discussion

9.6.1. Architectural choices

Sequential capability

Conventional sequential processors employ a range of techniques to increase instruction throughput
on single streams of instructions, such as superscalar execution to dynamically exploit parallelism
within the instruction stream to execute operations simultaneously, pipelining to increase the number
of instructions that can be processed at once, speculative execution to reduce the costs of conditional
branches and out-of-order execution to Vll delays.
There is a question of what the level of sequential capability of a processor to use in a parallel

system shall be, since this comes at the expense of silicon area and predictability.
The eUectiveness of techniques to improve sequential performance has diminished in terms of area

(and consequently power) as their complexity has grown. There are inherent limits to parallelism
in instruction streams and the beneVts of branch prediction, and to the depth and size of execution
pipelines and reorder buUers. The trend of diminishing returns from these architectural optimisations
is described by Pollack’s rule [Pol99]. It states that performance increase is roughly proportional to the
square root of increase in complexity, so that a doubling of area delivers only 40% more performance.
This is evident in historical scaling of CPU technology and performance [DKM+12]. Borkar observes
that Pollack’s rule suggests a better use of silicon area is with more cores as it has the potential to
increase performance linearly with complexity and power [Bor07], adding further support for the
approach proposed in this chapter.
The increased complexity of processors also results in less predicable performance and the likeli-

hood of rare events such as branch mispredictions or cache misses increases exponentially with the
number of processors and any delay is magniVed when it aUects a synchronisation.

A simple microprocessor architecture therefore allows large numbers of processors to be integrated
together to deliver higher performance per unit area and the performance of each processor will
be predictable or even deterministic. Moreover, with close proximity of memory, access latency is
minimised close to that of regular arithmetic, logic and branching operations, then many of the
techniques found in conventional sequential processors, in particular caching, are no longer necessary.
Indeed, with the UPA and sire, when large memories and caching schemes are absolutely necessary,
they can be expressed as software components and emulated with only a small overhead. This was
discussed in Chapter 7 with some simple examples; the next chapter provides some evaluation.

200

9.6. Discussion

A rough comparison of sequential capability

To illustrate the trade-oU between sequential capability and silicon area, Table 9.11 compares several
contemporary processors. The Intel Sandy Bridge core is 64-bit, Woating-point capable, pipelined,
superscalar and out-of-order. Estimates for its area are based on [YKM+11]. The ARM Cortex-
A9 core is 32-bit and also Woating-point capable, pipelined, superscalar and out-of-order, but to
a lesser extent than Sandy Bridge since it is designed as an embedded processor for low-power
applications [ARM12a]. ARM Cortex M0 core is a 32-bit minimal implementation of the ARM
architecture [ARM12b]. The sequential capability of the XMOS XS1-L core is similar to the Cortex M0.
The Vgures indicate that a conventional complex sequential processor can deliver up to around a

factor of 8 times the serial performance when compared to very simple processor, although in general
the gain is likely to be less than this. The cost of additional sequential capability is around a factor of
50 to 1,000 in silicon area, less predictable execution and greater power requirements. An array of
the simple processors therefore only needs to Vnd an average parallel speedup of 4 to 8 to break even
with the conventional processor. With N processors, there is potential for an N -fold performance
improvement, far beyond what a conventional processor can deliver.

Heterogeneity

Another important issue to discuss here is heterogeneity. Heterogeneous architectures employ
diUerent types of processors to support diUerent workloads. In the last 5 to 10 years there has
been an emerging trend with heterogeneity, particularly in HPC with the use of accelerator devices.
Predominantly, this has been concerned with GPUs as they have become more programmable, but
FPGAs have also had some attention.
A heterogeneous system is, by its very nature, specialised to a particular set of applications (or

even just one application) because its capabilities are apportioned in speciVc quantities. This is a
good approach when the application of the machine is well deVned, as it is in computer graphics
with GPUs, but problems arise when the system is applied to diUerent domains, as GPUs are in HPC.

Specialisation poses a signiVcant problem for the portability of programs because programmers
have to explicitly consider the details of a speciVc heterogeneous machine to obtain good performance.
It is therefore unlikely that a program written for one heterogeneous machine will execute with the
same eXciency on a diUerent machine with a diUerent specialisation. A further eUect of specialisation
is that it makes it diXcult to develop a single programming model, making the development of
programming languages challenging.
In general, a homogeneous architecture provides a better balance over changing workloads and

maintains a single architecture. However, there is potential for heterogeneity to be employed in
diUerent implementations of a particular architecture. In the case of the UPA, a speciVc implementation
could be specialised to support a particular subset of the programs that can be compiled to it. This
subset could, for example, be sequential programs and the architecture could be specialised with
one or a small number of processors that have good sequential performance, at the expense of some
area (this kind of approach is motivated by the investigation into the sequential capabilities of a UPA
implementation in the next chapter). Specialisation in this way will rely on extensions to a compiler
that can exploit it, but by maintaining a single architecture, programming languages, compilers and
programs remain portable and can develop with diUerent implementations and technologies.

9.6.2. Modelling and estimates

Chip layout

The layout of the Clos allowed a simple VLSI model to be used to obtain estimates for area of the
die, components of the system contributing to the area and lengths of wires. These estimates are
likely to be conservative since the design does not aggressively utilise the available area. In particular,

201

Chapter 9. An implementation model for the UPA

the switch groups and dedicated wiring channels introduce unused area into the designs and the
ineXciency of these grows with system size.
A more eXcient layout could be used, to make a better use the available area and metal layers

for global interconnections. Theoretical results for VLSI layouts of fat tree variants that, similar
to the Clos networks studied, for example those by Greenberg [GL88] and DeHon [DeH00], could
potentially be applied or extended to do this.

The CACTI tool

CACTI [TMHAJ08] is a tool built by HP labs to estimate the area and performance of memories.
It provides a range of conVgurable parameters making it useful for design-space explorations and
relative studies and therefore, in principle, ideal to produce Vgures for area and delay of diUerent
memory conVgurations for UPA tiles. However, it was found in the course of this investigation to
produce results that were highly inconsistent with the ITRS and other published data.
The area eXciency of CACTI designs in many cases were very low and varied signiVcantly. For

example, the area of 40 nm commodity DRAM memories from 1 MB to 1 GB increased from 4.60%
to 31.44% area eXciency. This indicates that the model employed by CACTI is perhaps geared
towards larger memory capacities or is ineUective in generalising between diUerent technologies.
Supporting this experience, a previous study by Agrawal and Sherwood on SRAMs found that CACTI
overestimated area and delay by 20% to 60% [AS07]. The consequence of these issues were that
CACTI was unsuitable to be used as part of the model. Instead, a simpler approach was taken based on
density and area eXciency, which remain reasonably consistent between diUerent implementations.

High-level design studies

The experience with the CACTI tool highlights an important aspect of the work presented in this
chapter. There are a multitude of issues associated with VLSI systems, from high-level design to
low-level implementation, and particularly as process technologies descend into deep sub-micron
geometries. This makes it diXcult to generalise and extrapolate between diUerent geometries,
especially with complex models that focus too much on particular issues, even though there is a great
degree of continuity in the high-level capabilities of silicon devices.

A more robust approach in high-level design studies is to choose the simplest set of parameters to
obtain a best generalisation, because despite the challenges faced by system designers and fabricators,
ways continue to be developed to maintain broad scaling trends such as transistor density. The
proposed implementation model takes this approach, for example, with the placement of components
and wiring, and in the performance scaling of memory and global wires. The result is a deVnite
design to evaluate, leaving others to reVne.

9.6.3. Future technology

The key strengths of the UPA is its simplicity and modularity. This chapter has demonstrated that it
can be implemented eUectively with current technologies but it also suggests that it will continue to
be with future technologies, a crucial aspect of its general-purpose nature and longevity.
Of particular interest are two emerging technologies that could signiVcantly increase the density

of integration and connectivity in large multi-chip systems.

• 3D integration allows chips to be stacked on top of one another and to be connected between
chips with through-silicon vias to provide Wexible high-density connections between chips. It
is being developed already to increase bandwidth and density in memories. A stackable DRAM
die is already commercially available from Tezzaron [Tez10] and Elpida are producing packages
containing stacked DRAM chips [Elp11]. As well, standards are emerging for embedded

202

9.6. Discussion

systems with Wide I/O [JED11] and in the desktop and server space with the Hybrid Memory
Cube [Hyb13].

• Optical interconnections can potentially be made with a silicon chip [Mil10] that would allow a
large number of signals at high bandwidth to be carried down a single optical Vbre. This has
the potential to signiVcantly improve the density of connections between chips, to move away
from the enormous constraints of conventional electrical connections on PCBs. Moreover, if
3D integration was used to build stacks of chips of the nature described in this chapter, optical
interconnections may be the only currently feasible technology able to source and sink the
amount of data that would be consumed and produced by the large collection of processors
contained in them.

203

CHAPTER 10.

PERFORMANCE EVALUATION

OF THE UPA AND SIRE

programs

sire

compilation

model

UPA

In this chapter, the performance of the implementation of the UPA proposed in Chapter 9 and its
ability to support the execution of sire programs is explored. Evaluated is conducted with high-level
software simulations of the UPA with a performance model for the proposed implementations.
Because of the high-level nature of the models, the results produced by the simulation can be
taken as only an indication of what could be expected from the systems examined. Therefore, a
comprehensive evaluation and comparison against contemporary architectures is beyond of the scope
of this investigation.
The evaluation focuses on the following speciVc aspects of the proposals and concentrates on the

scalability of the performance:

1. the eXciency of primitive mechanisms for parallelism, communication and abstraction to
demonstrate the scalability of the language and its implementation targeting the UPA;

2. the ability of the UPA to support sequential programming techniques since this provides a way
to support legacy sequential software and a means to transition from existing sequential or
non-scalable machines.

The chapter begins by describing the simulation and performance model used in the evaluation.
Then, for the two above aspects, the experimental methodology performance results are presented.
Finally, the chapter concludes with a discussion of the results.

10.1. Simulation model

10.1.1. A network performance model

The system model presented in Chapter 9 provides values for the latency of signal transmissions
along links and their bandwidth. The performance of communication depends on some additional
parameters related to the latency of the switching elements in the network. The following sections
describe these parameters and formulate the simple network performance model that is used in the
simulation.

Network latency

Given an interconnection network represented by a graph G = (V,E) whose vertices V represent
nodes containing a switch and zero or more tiles, and edges E that represent communication links
(see §4.1.1 [p. 41] for a description of the network model) the latency of a message sent from processor
s ∈ V to processor t ∈ V depends on:

• ttile, the latency of the link between the tile and the switch;

• tswitch, the switch latency;

• topen, the additional latency to open a route through the switch;

• ccontention, the switch contention factor;

205

Chapter 10. Performance evaluation of the UPA and sire

• d(s, t), the length of the path in the network (d(s, t) = |p(s, t)|);
• tlink(u, v), the latency of the link between nodes u, v ∈ V ;

• tserial, the serialisation latency, which is determined by the message length and channel band-
width, such that if s and t are on the same chip, then tserial = tserial-intra and if they are on
diUerent chips, then tserial = tserial-inter.

When the route between s and t is not already open, message latency is calculated as

tclosed(s, t) = 2ttile + tserial + (d(s, t) + 1)(topen + tswitch · ccontention) +
∑

`∈p(s,d)

tlink(`)

and when the route is open it is calculated as

topen(s, t) = 2ttile + tserial + (d(s, t) + 1) · tswitch · ccontention +
∑

`∈p(s,d)

tlink(`)

Both models are comprised of the sum of four latency components: tile-to-switch, serialisation,
switch traversal and link traversal. When shortest-path oblivious routing is employed, d(s, t) is the
minimum distance between s and t; with two-phase randomised routing, d(s, t) is twice the network
diameter for a Clos network, and twice the average path distance for a mesh.
Values for the parameters of the above latency are summarised in Table 10.1. The estimates

in Chapter 9 are used to calculate the link and serialisation latencies and the switch latencies are
estimated by Vtting measurements taken with a real XMOS device called the XMP-64 [XMO10] to
the above latency model.1 The XMP-64 consists of 16 XS1-G4 [XMO12b] chips that each contain
4 processing tiles and a switch. Measurements taken for the other parameters are included for
comparison, with the following caveats: on-chip there is no serialisation latency since the tiles are
connected to the switch with 8-bit links, and oU-chip, the switches are connected in a 4D hypercube
topology with two sets of 5-wire links that use a 1-in-5 coding scheme.2 This uses 5 wires to deliver 1
byte every 4 cycles (the serialisation latency), and operating at 400 MHz, this provides a bandwidth
of 400 Mb/s in each direction [XMO12a, §3.1].

Switch contention

When the network is under load, many communications occur simultaneously and in many cases
these will compete for resources. This situation occurs at switches where messages contend for
particular links, delaying one another and increasing the time taken to traverse a switch. With
two-phase randomised routing the distribution of load on switches will be almost always uniform and
even. This allows a simple probabilistic model to be used where all messages experience a particular
level of contention and a uniform overhead in switch traversal.
The following model of switch contention is based on the model described in [MTW93, Ch. 6]. A

switch with n input links and n output links attempts to route tokens from each of the inputs to one
of the outputs, where output links are chosen uniformly at random. A subset of these will succeed
immediately in the time to open the route and transmit the token. This is called a time slot, tslot, and
is equal to the time taken to open a connection, tO , and transmit a token across the switch, tS . All
other tokens are discarded and a new time slot begins, proceeding in the same way. The switch does
not actually discard any tokens, but since the destinations in next time slot of the model are chosen
uniformly at random, it captures the delay experienced by tokens that could not be delivered.
1For a general discussion of the methodology for taking performance measurements and other speciVc results with the
XMP-64, please refer to [Han09].

2Anm-of-n scheme encodes anm bit symbol into an n-bit codeword such that the Hamming weight of all the symbols
is constant. This property means they can be used to signal asynchronously, for example, across clock domains,
because the transmission of each symbol will change a constant number of signals. This approach also reduces power
consumption and improves signal integrity.

206

10.1. Simulation model

Parameter Symbol Value XMP-64 measurement
(cycles)

Thread-to-thread latency - 1 cycle 4
Tile-to-switch latency ttile see §9.5.2 [p. 191] 1
Switch latency tswitch 2 cycles 2
Latency to open a route topen 5 cycles 5
Switch contention factora ccontention 1.567 not measured
Serialisation latency intra-chip tserial-intra 0 cycles 0
Serialisation latency inter-chip tserial-inter 2 cycles 4
Link latency tlink see §9.5.2 [p. 191] 2 on-chip, 3 oU-chip

Table 10.1.: Parameters for the network performance model. The switch latencies are based on measurements
made with the XMP-64; the other measurements are included for comparison.

aThis is under uniform load (see §10.1.1 [p. 206]); when then network is uncongested, ccontention = 1.

The expected delay of a packet tdelay is given by

tdelay = tslot ·
∞∑
i=1

i · p(i)

where i is the slot number and p(i) is the probability of success on the ith attempt. Since p(i) =
p(failure)i−1 · p(success) then

tdelay = tslot · p(success) ·
∞∑
i=1

i · p(failure)i−1 (10.1.1)

At the start of a time slot, the probability of an output link being free is

P (success) =

(
1− 1

n

)n

and hence the probability of it being used is

P (failure) = 1− P (success) = 1−
(

1− 1

n

)n

Then summing the series in Equation 10.1.1 yields

tdelay =
tslot

P (failure)
.

The peak contention of a 32×32 crossbar switch, with tokens on all input links, is then tdelay =
tslot/0.638 and hence, under uniform load, ccontention = 1/0.638 = 1.567.

10.1.2. Simulation platform

A modiVed version of AXE (An XCore Emulator)3 is used to simulate the behaviour and performance
of the parallel systems. AXE is an event-based functional simulator for the XS1 architecture that
provides approximate instruction execution timing. It simulates only the state of each processor
and not the behaviour of the network; communication corresponds only to writes into ‘remote’

3The original version of AXE is open source and available from http://github.com/rlsosborne/tool_axe; the
version developed for this work is available from http://github.com/jameshanlon/tool_axe.

207

http://github.com/rlsosborne/tool_axe
http://github.com/jameshanlon/tool_axe

Chapter 10. Performance evaluation of the UPA and sire

channel ends. It is fast compared to the cycle-accurate simulator provided with the standard XMOS
tools, which makes it practical to run large simulations (up 4,096 processors) for short instruction
sequences.
The main modiVcations to AXE were to attach a latency to messages passed between threads,

based on the performance model described in the previous section and a latency to instructions that
access memory to reWect the performance of SRAM and eDRAM. For message passing, the eUect is
to assign a Vxed latency to communications between each source-destination pair. AXE was also
modiVed to boot from an executable Vle of the format produced by the sire compilation that contains
two binary images: a master image that is loaded on core 0 and a slave image that is replicated on all
other cores.

10.1.3. Assumptions

The following points outline several assumptions made in the performance model and evaluation.

• Chosen system conVgurations. In the last chapter, four system conVgurations from the options
listed in Tables 9.9 and 9.10 were highlighted as providing a good trade-oU between their various
capabilities. For the purposes of this evaluation, these particular selections are representative
since the various conVgurations would not result in signiVcant diUerences in performance.
One further simpliVcation is made by choosing only the systems with SRAM memory. This is
because the additional cycle of latency incurred by the eDRAM would also only marginally
aUect aUect performance.

• Optimistic mesh performance. In all experiments with parallel workloads, two-phase randomised
routing is used and the network is assumed to be loaded with congested switches. The model of
congestion assumes that communication traXc is distributed evenly over the network, which
will be true with the Clos network because the capacity scales suXciently with the number
of terminals it connects. However, capacity in the 2D mesh does not scale with the number
of terminals and the consequence of this is that traXc hot-spots will occur at some switches.
Since the evaluation uses the same model for both networks, it assumes an optimistic case for
the 2D mesh and in reality, performance is likely to be worse in most cases, and substantially
worse in some.

• Single thread XCore performance. An XCore processor is intended to execute a collection of
threads to perform latency hiding. It has a four-stage pipeline and, to simplify the implementa-
tion, at most one instruction from any thread can be present in the pipeline at any particular
time. The result of this is that each thread executes at a rate of at most one quarter of the core
clock frequency. Since the evaluation does not deal with latency hiding, it is assumed in the
evaluation that a thread can operate at the core frequency.

10.2. Efficiency of sire primitives

In this section, the evaluation eXciency of the primitive aspects of the sire language, relating to
parallelism and communication, is presented. These are primitive in the sense that they are not
derived from any other feature (although they are present in both the canonical and standard forms
of the language).
The evaluation is performed using an experimental implementation of sire,4 which is based on an

early and undocumented version of the language. It diUers in a number of respects from the version
proposed in Chapter 6 but it includes the features for processes, channel connections and run-time
distribution of program. It is suXcient to perform the following evaluation but the limitations of
using it are discussed at the end of this chapter in §10.4.1 [p. 224].

4The experimental implementation of sire is available from http://github.com/xcore/tool_sire.

208

http://github.com/xcore/tool_sire

10.2. EXciency of sire primitives

10.2.1. Methodology

There are several reasons why evaluation of sire primitives is a good approach to characterising the
eXciency of the language:

1. the canonical and standard forms of sire are based on a small set of primitives so it is essential
that their operation is eXcient;

2. the independence of programs from the underlying network means that the performance of
diUerent components is compositional and the performance of a given component remains
consistent whether in isolation or in composition with other components;

3. the results are general and applicable to all programs;

4. simple benchmark programs will exhibit simple behaviours and therefore produce results that
can be interpreted accurately and even used to model the performance of other programs.

The primitive aspects chosen for the evaluation are:

• call primitives5 relating to the on clause of the canonical form and server calls that both
have conventional procedure-call semantics and are used to implement program distribution,
communication and abstraction;

• structural primitives relating to process replication and channel connections that provide the basis
for expressing and creating parallel structures.

These are integrated in a set of microbenchmark programs and the evaluation is based on executing
each one over a range of system parameters to demonstrate eXciency and scaling. The microbench-
marks are compiled according to the process described in Chapter 8 and no special optimisations,
such as inlining, are used that would bias the results.

Microbenchmarks for call primitives

The call primitives are based on a set of similar procedures that vary in the number of parameters
and whether they are passed by value or by reference. Each procedure applies a binary associative
operation to all of the parameters. On the following examples this operation is logical ‘and’ and
returns the result in a variable parameter. The pass-by-value procedures with n input parameters
have the form

process P(var r, val v1, v2, · · · , vn) is r := v1 ⊕ v2 ⊕ · · · ⊕ vn

and the pass-by-reference procedures with n input parameters have the form

process P(var r, v1, v2, · · · , vn) is r := v1 ⊕ v2 ⊕ · · · ⊕ vn

These provide simple benchmarks in which the execution time of a procedure call will be correlated
with the number and nature of parameters and serve to highlight the costs of the remote forms of
calling. Although further variation could be introduced with array parameters, their eUect would be
a Vxed overhead for the transfer of data that is not directly related to the calling mechanism.

LetX be one of val or var, then in the scope of the above deVnitions, local execution corresponds
to

var r: X v1, v2, · · · , vn: P(r, v1, v2, · · · , vn)
where r is the name of a variable and v1, v2, · · · , vn are values or names of variables depending
on the type of the parameters. This is used as a performance baseline. In the scope of the above
deVnitions, execution on a remote processor x corresponds to

5In the deVnition of sire in Chapter 6, procedure calls are referred to as instances because this terminology is consistent
with named processes. However, for simplicity, these three mechanisms are all referred to as calls in this context.

209

Chapter 10. Performance evaluation of the UPA and sire

var r: X v1, v2, · · · , vn: on x do P(r, v1, v2, · · · , vn)

The equivalent server call corresponds to the client process in the composition

var r: X v1, v2, · · · , vn:
s is interface(call P(var r, X v1, v2, · · · , vn)):
alt { accept P(var r, X v1, v2, · · · , vn):
r := v1 and v2 and · · · and vn } :

s.P(r, v1, v2, · · · , vn)

The three versions of procedure calling diUer primarily by the amount of state that is to be
communicated in the execution of a call. The experimental evaluation will quantify their relative
costs. The eUects of each version can be summarised as follows, from the least communication to the
most.

• Local call: execute a procedure locally, providing it with local parameters from registers and
the stack (according to the calling convention that is described in §8.3.3 [p. 152]).

• Server call: invoke the execution of a procedure remotely, providing the target server with just
the parameter values.

• Remote call: execute a procedure remotely, providing the target processor with the procedure
closure. The closure contains the parameter values and all of the necessary program for
execution. When execution is complete, the values of any updated referenced variables are
sent back.

For each benchmark, the time for the local, remote or server call to complete is measured.

Microbenchmarks for structural primitives

The structural primitives are based on the creation of process arrays and formation of process
structures with communication channels. The replicator benchmark is the process array

par [i=0 for N] skip

which creates N instances of the process skip on N diUerent processors. Although this is seemingly
simple, it is the mechanism by which collections of processes, and in particular servers, are initiated
and terminated, and therefore will underpin the performance of sire programs. The canonical form of
this statement is a recursive procedure that employs on clauses to distribute execution (the process
by which a replicator is transformed into a parallel recursive process is described in §8.2.8 [p. 145]).
The performance is measured by timing the complete execution of the replicated process.

The process structures of §7.1 [p. 101] are taken as a representative set of regular structures to
characterise the basic constructs of simple message-passing algorithms. They are a 1D mesh or
pipeline, a 2D mesh or grid, a binary tree and a hypercube. Each structure is used as a benchmark
to observe the overhead of establishing channel connections between component processes of an
array. In general, this overhead of establishing connections will not be correlated with the number of
channels per component process of the structures because the sequence of connections will cause
some processes to have to wait. Although this is a consequence of the algorithm rather than the
implementation of the language, it is the approach that must be taken when writing sire programs, so
it is important to investigate the eUect that it has.
For each structure, the total time for the creation and distribution of processes, connection of

channels and termination and tear-down of the structure is measured and compared with just the
distribution time to quantify the channel connection cost.

The replicator and process structure benchmarks can be seen as minimal examples of highly parallel
components since they only trigger the setup and teardown mechanisms, and do not perform any real

210

10.2. EXciency of sire primitives

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8

Ex
ec
ut
io
n
ti
m
e
(n
s)

Number of input parameters

pass-by-value
pass-by-reference

Figure 10.1.: Execution time for the local procedure-call benchmark.

computation. Their execution time therefore relates to the cost of employing parallel subroutines in a
program. In a sequential analogue of procedure calling, this corresponds to measuring the overhead
of parameter passing in registers and the stack, branching and linking, stack initialisation and the
corresponding uninitialisation and return of results on completion.

10.2.2. Results

The following sections present the results for the call and structural primitives.

Call primitives

Figure 10.1 shows the execution time as a function of the number of parameters for the procedure-call
benchmark executed locally. In this, pass-by-reference has a greater overhead because all of the
values must be loaded from memory by the callee from the addresses passed to them, whereas they
are available directly from registers when passed-by-value. The change in line gradient shows that
after four parameters, there is an additional store instruction required to pass them using the stack.
Figure 10.2 shows the performance of the server versions of the procedure-call benchmarks and

Figure 10.3 shows the remote versions. In each plot, the execution time is given for both intra-switch
and inter-switch communication (in the largest and smallest networks) since inter-switch latency is
Vxed in network of a given size due to two-phase randomised routing.
A server call is a message-passing exchange between a client and a server that consists of an

initialisation where the client identiVes itself, then transmission of parameter values, execution of
the call by the server while the client waits, then Vnally transmission of any updated referenced
parameters. Overall, the execution time grows linearly with the number of parameters since they
are all eUectively sent by value. There is an additional overhead of around 20% to 30% when they
are passed by reference because the value of each referenced variable is sent back to the caller after
the call is executed (the client and server sides of a server call are described in §8.5.2 [p. 172] and
§8.5.1 [p. 167]).
The execution time of server calls between tiles attached to the same switch is between 2 and

5 times that of a local procedure call at 70 ns to 160 ns. When the call is performed over the Clos
network, this increases to between 8 to 20 times that of local calls, but in all cases, it does not exceed
one microsecond, or equivalently, 1,000 local operations. When the call is performed over the 2D
mesh network, the costs are much higher at between 25 and 70 times that of local calls (1 µs to 2 µs)
because of the longer path lengths and consequent additional latency.

211

Chapter 10. Performance evaluation of the UPA and sire

50
100
150
200
250
300
350
400
450
500

0 1 2 3 4 5 6 7 8

Ex
ec
ut
io
n
ti
m
e
(n
s)

Number of input parameters

network 1K tiles
network 4K tiles

switch

(a) Clos network, pass-by-value parameters

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8
Ex

ec
ut
io
n
ti
m
e
(n
s)

Number of input parameters

network 1K tiles
network 4K tiles

switch

(b) Clos network, pass-by-reference parameters

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6 7 8

Ex
ec
ut
io
n
ti
m
e
(n
s)

Number of input parameters

network 1K tiles
network 4K tiles

switch

(c) mesh network, pass-by-value parameters

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8

Ex
ec
ut
io
n
ti
m
e
(n
s)

Number of input parameters

network 1K tiles
network 4K tiles

switch

(d) mesh network, pass-by-reference parameters

Figure 10.2.: Execution time for the server versions of the procedure-call benchmarks. In each plot, results
are given for intra-switch communication and inter-switch communication in large and small
networks.

212

10.2. EXciency of sire primitives

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of input parameters

network 1K tiles
network 4K tiles

switch

(a) Clos network, pass-by-value parameters

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of input parameters

network 1K tiles
network 4K tiles

switch

(b) Clos network, pass-by-reference parameters

0
5
10
15
20
25
30
35
40
45

0 1 2 3 4 5 6 7 8

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of input parameters

network 1K tiles
network 4K tiles

switch

(c) 2D mesh network, pass-by-value parameters

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of input parameters

network 1K tiles
network 4K tiles

switch

(d) 2D mesh network, pass-by-reference parameters

Figure 10.3.: Time for the remote execution of the procedure-call benchmarks. In each plot, results are given
for intra-switch communication and inter-switch communication in large and small networks.

A remote call is similar to a server call except that the procedure (and any child procedures) to be
executed are transmitted to the host processor as the parameters of the call. There is also overhead
in initialising a new thread of execution and its associated state such as the stack (the two sides of
the ‘on’ protocol are described in §8.4.3 [p. 158] and §8.5.4 [p. 173]). The trend is therefore similar to
that of server calls, with a linear relationship eUectively between the size of the call closure and the
execution time.
The execution time of a remote call between tiles attached to the same switch is 40 to 100 times

that of a local call at around 1 µs to 6 µs. When the call is performed over the Clos network, this
increases to between 150 and 250 times that of a local call (around 4 µs to 16 µs), and when it is
performed over the 2D mesh this is much higher at 500 to 1,000 times that of a local call (around
10 µs to 60 µs).

213

Chapter 10. Performance evaluation of the UPA and sire

0
20
40
60
80
100
120
140
160
180
200
220

8 16 32 64 128
256

512
1024

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of processes

Clos mesh

(a) 1,024 tiles

0
100
200
300
400
500
600
700

8 16 32 64 128
256

512
1024

2048
4096

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of processes

Clos mesh

(b) 4,096 tiles

Figure 10.4.: Log-linear plots of the performance of process distribution.

Structural primitives

Figure 10.4 shows how the execution time of a replicated parallel process scales as the number of
component processes increases. For 8 and 16 processes, communication does not incur the network
latency. Beyond this, the latency increases logarithmically with the size of the replicator because the
distribution expands exponentially over the system. Since the execution time presented in the plots
corresponds to both the creation and termination of the array of processes, the time to bring the
component processes into action will be around half of the total time. This is because the transfers
of data between processors are small (few parameters and short programs), so the time will be
dominated by the allocation and initialisation (respectively termination and deallocation) of threads,
memory and channels etc.
Figure 10.6 shows the performance of the pipeline, 2D grid, hypercube and binary tree process

structure benchmarks. In each plot, the execution time for the creation and termination of the struc-
ture is given. This comprises the distribution time, which will be similar to that of Figure 10.4 since
the overhead of multidimensional replicators and multiple replicators in composition is negligible,
and the time to establish the channel connections. The execution time of each of the programs
without communication channels is included to indicate the overhead of channel connections.

To help interpret these results, it is useful to look at the time it takes to establish a connection.
Between two ready processes, it is 620 ns when they are both connected to the same switch, and
when they are not, it takes between around 900 ns and 1,000 ns in Clos networks of 1,024 and 4,096
tiles, and between around 900 ns and 2 µs in 2D mesh networks of the same sizes. These times
are small compared to the distribution overhead, but the sequence of connections and the relative
timing for each process in the structure introduces further overhead. To see this, consider the parallel
recursion in the execution of a replicator; when it branches, one branch will execute locally and the
other remotely, causing the two branches to diverge in time. Therefore, processes connecting across
branches close to the root will wait the longest; the benchmarks highlight this. In particular: the
connection sequences of the pipeline and 2D grid have a Vxed number of steps (2 for the pipeline
and 4 for the 2D grid) but as the size of the array increases, so does the variation in timing between
components, causing longer waits; and the connection sequences for the hypercube and binary tree
both have a logarithmic number of steps in N (the number of processes) which for N greater than 8
is more than the pipeline and grid, but they execute faster because the connection they make are
better matched with the timing of the distribution.
Overall, these results demonstrate a 10% to 25% connection overhead for the pipeline, hypercube

and tree process structures, and 40% to 50% for the 2D grid. These structures can be initiated and
terminated over 1,024 tiles in 300 µs to 400 µs and over 4,096 tiles in 800 µs to 1,200 µs.

214

10.2. EXciency of sire primitives

0

50

100

150

200

250

8 16 32 64 128
256

512
1024

2048
4096

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of processes

pipeline 1K tiles
pipeline 4K tiles

distribution 1K tiles
distribution 4K tiles

(a) pipeline process structure, Clos network

0
100
200
300
400
500
600
700
800

8 16 32 64 128
256

512
1024

2048
4096

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of processes

pipeline 1K tiles
pipeline 4K tiles

distribution 1K tiles
distribution 4K tiles

(b) pipeline process structure, mesh network

0

50

100

150

200

250

300

350

16 64 256
1024

4096

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of processes

2D grid 1K tiles
2D grid 4K tiles

distribution 1K tiles
distribution 4K tiles

(c) 2D grid process structure, Clos network

0

200

400

600

800

1000

1200

16 64 256
1024

4096

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of processes

2D grid 1K tiles
2D grid 4K tiles

distribution 1K tiles
distribution 4K tiles

(d) 2D grid process structure, mesh network

Figure 10.5.: Log-linear plots for performance of the initialisation and termination of pipeline, 2D grid process
structures in sire. Each plot also shows the distribution time, which is without any channel
connections. There are fewer results in (c) and (d) because they are based on square grids.

215

Chapter 10. Performance evaluation of the UPA and sire

0

50

100

150

200

250

8 16 32 64 128
256

512
1024

2048
4096

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of processes

hypercube 1K tiles
hypercube 4K tiles
distribution 1K tiles
distribution 4K tiles

(a) hypercube process structure, Clos network

0
100
200
300
400
500
600
700
800

8 16 32 64 128
256

512
1024

2048
4096

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of processes

hypercube 1K tiles
hypercube 4K tiles
distribution 1K tiles
distribution 4K tiles

(b) hypercube process structure, 2D mesh network

0
20
40
60
80
100
120
140
160
180
200
220

8 16 32 64 128
256

512
1024

2048
4096

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of processes

binary tree 1K tiles
binary tree 4K tiles
distribution 1K tiles
distribution 4K tiles

(c) binary tree process structure, Clos network

0
100
200
300
400
500
600
700
800

8 16 32 64 128
256

512
1024

2048
4096

Ex
ec
ut
io
n
ti
m
e
(µ
s)

Number of processes

binary tree 1K tiles
binary tree 4K tiles
distribution 1K tiles
distribution 4K tiles

(d) binary tree process structure, 2D mesh network

Figure 10.6.: Log-linear plots for performance of the initialisation and termination of the hypercube and binary
tree process structures in sire. Each plot also shows the distribution time, which is without any
channel connections.

216

10.3. Emulation of large sequential memories

Summary

Server calls are a mechanism for implementing distributed abstractions. They provide conventional
procedure-call semantics but are implemented with sequences of message-passing exchanges. The
performance results show that server calls can be executed eXciently, for example, between nodes in
a network of 4,096 nodes in less than 1 µs; an overhead of around just 20 times that of a local call. In
contrast, remote calls, which are used to distribute state around a system have an overhead of around
150 to 250 times that of a local call. This might sound a lot, but it suggests that it is economical to
oYoad work from a particular processor, either to a nearby processor attached to the same switch
when the amount of work exceeds just 2,000 to 12,000 operations, or to any other processor in the
system when the work exceeds 8,000 to 32,000 operations.6

When remote calls are combined with recursion they can be used to rapidly initiate distributed
parallel processes. This forms the basis for the implementation of parallel replicators, which are the
principal means of introducing large amounts of parallelism with the sire language. With these, a
process array can be distributed over 128 tiles in less than 100 µs, and over 4,096 tiles in less than
200 µs. Regular communication structures can be established dynamically over process arrays with
sequences of channel connections. The results demonstrate that for regular structures, the overhead
of this is generally small, at around 30% of the distribution time.
Since the evaluation is based on two-phased randomised routing and congested switches, the

results represent the performance of the system under load (a particularly favourable case for the
mesh) and therefore, these mechanisms can be composed arbitrarily while maintaining the same
performance.

10.3. Emulation of large sequential memories

In this section, the ability of the UPA to support sequential programming approaches is explored.
Although each processor is capable of executing sequential programs, to be able to execute arbitrary
ones, it must also support those with large memory requirements. This can be done by emulating a
large memory with a collection of smaller ones.
The main component of a conventional sequential machine is a large monolithic memory that

provides a large uniform address space. These are typically implemented with a collection of DRAM
arrays that are integrated in one or more chips and connected with an interconnect specialised to
transmit control, data and address information, to provide eXcient sequential random access.7 The
architecture of a DRAM system is therefore inherently distributed and in this sense, it is similar to
the UPA, which can been seen as a more general system that provides processing capability at each
sub-memory as well as an interconnect that can support parallel communication patterns.

This similarity leads to the question, and the subject of this section, how well can an implementation
of the UPA emulate a DRAM system? The most important factor in this is latency. DRAM systems
have been subject to around 40 years of optimisation in their architecture and manufacturing process,
reducing access latency to a minimum (the scaling of latency and bandwidth in DRAMs is discussed
at the end of this chapter in §10.4.2 [p. 225]). It is therefore determined primarily by the transmission
delay on wires, the dimensions of the component array cores and the critical delay of control
components such as the memory controller.

6LetN be the amount of work to do andD be the cost to distribute it to another processor, then it is economical to divide
the work in two when N

2
+D < N and therefore when 2D < N . WhenD is the cost just to create the parallelism

and does not include the cost of any data movement, then this provides a lower bound.
7The central component of a DRAM is an array core. This is a two-dimensional array of cells and associated peripheral
circuitry. The array core is sized to trade-oU well between density and delay and energy per activation and refresh.
Array cores are limited to a modest size that grows very slowly with respect to technology scaling due to their intrinsic
capacitance. For more details on the architecture of DRAM chips see Itoh [Ito01] and for general information on DRAM
memory systems see Jacob, Spencer and Wang [JNW07].

217

Chapter 10. Performance evaluation of the UPA and sire

An implementation of the UPA will inevitably introduce additional overheads because of its
generality, but the hypothesis underpinning this investigation is that, in practice, the overheads are
not more than an order of magnitude and that, for conventional sequential programs with a mix
of memory and computational operations, it can deliver an eXcient emulation with only a small
constant factor overhead.

10.3.1. Methodology

Emulation scheme

Typically, the requirements of local storage, which includes the program, constant values and the
stack, are small and can Vt into the local memory of a processor. The remaining global storage, which
is used for the data pool and heap, for statically- and dynamically-allocated items respectively, can
be stored in an emulated memory. The emulation is performed with a collection of tiles that are
managed by a memory controller process. The controller receives access requests over a contiguous
address range from a sequential client program and distributes them over the tiles by sending read
and write messages to them. Each tile could respond to these requests by either a server process
(similar to the Store server in §7.2.4 [p. 121]) or with the remote memory access mechanism. The
latter is employed in the evaluation to reduce latency to a minimum.

In the sequential (client) program, accesses to the emulated memory are written as communication
sequences, where a read has the correspondence

LDW destination, address →
OUTCT c, READ4
OUT c, address
IN c, destination

and a write has the correspondence

STW value, address →
OUTCT c, WRITE4
OUT c, address
OUT c, value

In both, c is a channel end that is connected to a memory controller process that will map accesses
over the distributed address space.
If the requirements of local storage exceeded the capacity of local memory, there are two options

to meet this requirement. Either, the program or stack could be split between processors, and control
would transfer from one processor to the other when using either portions of the stack. Alternatively,
a second emulated memory could be used. For the purposes of this investigation, only the simple
case is considered where local data does not exceed the local memory capacity.

In contrast with parallel programs, execution of sequential programs will not induce any concurrent
communication traXc in the network, and unless additional processes are run in parallel, each
message will travel without contention. When this is the case, the interconnect needs only to provide
low latency and high bandwidth at zero-load, and there is no requirement for two-phase randomised
routing. Therefore, messages can be routed obliviously along shortest paths.

Sequential machine model

The performance of a specialised sequential machine is used to provide a baseline for the emulation.
Performance is presented primarily by the relative slowdown of the emulation compared to the
sequential machine executing the same program. The modelled performance is based on latency since
it is the most diXcult aspect to scale; schemes for scaling bandwidth generally involve replication
and hence may in principle be applied to both systems. This is discussed in §10.4.2 [p. 225].

218

10.3. Emulation of large sequential memories

The sequential machine is modelled as an instance of the UPA with a single processor that is
attached to a DRAM memory. A cache is not modelled but memory accesses to areas that are stored
in local memory in the parallel emulation incur the same latency. The eUect of this is similar to
providing the sequential system with a fast cache memory with an 80% to 90% hit rate since global
memory accesses constitute between 10% to 20% of executed instructions in the benchmarks used in
the evaluation. The clock frequency of both systems is held at 1 GHz and it is assumed the sequential
DRAM can operate at this speed (typical DDR3 operates well in excess of this).
The access latency is estimated for a modern DRAM by simulation with DRAMSim2 [RCBJ11].

Performance is measured by performing read and write accesses to addresses chosen uniformly at
random over the address range and the Vxed latency is calculated as the average of these accesses.8

Latency measurements are based on random accesses and accesses are issued only once the last has
completed to restrict the memory controller to processing a single transaction at a time. For a system
with 1 Gbit DDR3 chips [Mic12a], average random-access latency is measured at 35 ns for a single
rank9 with a 1 GB capacity. For multi-rank system with 2 GB to 16 GB capacities, this increases to
36 ns due to a small overhead in switching between ranks. This choice is not important since the
empirical analysis is concerned with obtaining results to within small factors and to demonstrate
scaling behaviour.
Typically, DRAMs are packaged in DIMM cards but production processes are moving towards

stacked packages integrated with through-silicon vias and it is expected that stacks with multiple
DRAM chips will be available in the next few years e.g. withWide IO [JED11] and the Hybrid Memory
Cube [Hyb13]. Since DRAMSim2 does not model a particular packaging or wire delay, the model is
inclusive of stacked DRAM.

Benchmarks

The analysis is based on the following two benchmarks.

1. Synthetic instructions sequences that contain a particular ratio of global memory accesses to local
memory and non-memory operations, to characterise conventional sequential programs. The
ratios of these are chosen based on the instruction mix of the Dhrystone benchmark [Wei84],
which characterises integer general-purpose sequential programs, and at points over the range
of potential ratios demonstrate the eUect they have on performance.

2. A compiler for a simple sequential language. This provides both an example of a realistic general-
purpose application and a means of compiling sequential programs to the UPA. A modiVed
version of it emits message-passing sequences in the place of global memory accesses in order
to generate sequential programs that interact with an emulated global memory. Furthermore,
this allows the compiler to bootstrap itself, using the emulated memory in which its largest
data structures are stored: the parse tree, name table, label table and instruction buUer. The
compiler is itself written in the language it compiles and for the experiments, it performs
bootstrapping runs by compiling itself.

Figure 10.7 shows the proportions of diUerent types of instructions executed for the Dhrystone
and compiler benchmarks, that were measured from a simulated sequential execution. These are
non-memory instructions, such as arithmetic and branching, local memory instructions that include

8There is an overhead in opening a row in a DRAM and successive accesses to the same row exhibit lower latency.
Consequently, measurement of DRAM latency is based on two main components. First, the column Address Strobe (tCL)
latency, which is the time between specifying a column address and receiving the data in response, given that the row
being accessed is already open. Second, the row cycle time (tRC), which is the minimum time between the activation of
one row and another; there is a minimum period a row must be active for to perform a refresh and a non-active row
must be precharged before it can be read from.

9A DRAM rank is a set of one or more DRAM chips that are accessed simultaneously and provide a particular data width.
For JEDEC-standard (Joint Electron Device Engineering Council) DRAMs, a channel typically has a 64-bit data bus and
with error-correcting code (ECC) memory, this is expanded to 72-bits.

219

Chapter 10. Performance evaluation of the UPA and sire

0

10

20

30

40

50

60

70

80

non-memory local global

Pe
rc
en
ta
ge

(a) Dhrystone instruction mix

0

10

20

30

40

50

60

70

80

non-memory local global

Pe
rc
en
ta
ge

(b) compiler instruction mix

Figure 10.7.: Instruction mix of the Dhrystone and compiler benchmarks, showing the proportions of executed
non-memory, local memory and global memory instructions.

all accesses to the program, stack and constant pool and global memory instructions to access the
data pool and heap regions. Synthetic sequences are used with a varying proportion of global access
and these have a Vxed 20% proportion of local memory accesses, based on the benchmarks.
In all experiments, the size of the emulation is scaled by distributing a particular address range

over a collection of tiles.

10.3.2. Results

The following sections present the results for the absolute performance of the emulation and its
performance with the set of benchmarks.

Absolute latency

Figure 10.8 shows how the average access latency of random reads and writes in the emulated
memory scales as the number of tiles is increased in the emulation. The baseline latency measured
from the simulated DDR3 memory is included for comparison.

Figure 10.8a shows the performance with oblivious shortest-path routing in an unloaded network,
when there is no switch contention. Performance of the Clos network clearly reWects the logarithmic
growth of the network diameter and the latency incurred by additional stage in systems larger than
256 tiles can be seen in Figure 10.8a. Latency in the 2D mesh increases linearly with the size of the
emulation, with a change of gradient as communications traverse between chips. Overall, the Clos
delivers latency with a factor of around 2 to 5 compared to the DDR3 memory. The performance of
the two networks is similar on-chip but the 2D mesh incurs a 30% to 40% overhead relative to the
Clos for larger multi-chip emulations.
The situation is more pronounced in Figure 10.8b, which shows the performance with two-phase

randomised routing in a loaded network. The Clos maintains a similar level of performance, up to a
factor of 5.5 compared to the DDR3 memory, but latency in the mesh increases signiVcantly since
messages must travel twice the average path length.
Figure 10.8c and Figure 10.8d show the additional latency that is introduced in an identical

emulation except now server processes deal with the memory accesses at each of the component tiles
instead of the remote memory access mechanism. This is therefore the performance of the emulation
when it is expressed purely using the sire notations, and no special optimisations are applied in the
compilation. These results show around a 25% overhead and give a further indication of the eXciency
of the language.

220

10.3. Emulation of large sequential memories

0

50

100

150

200

250

300

8 16 32 64 128
256

512
1024

2048
4096

A
cc
es
s
la
te
nc
y
(n
s)

Size of emulation (tiles)

DDR3

Clos 1K tiles
mesh 1K tiles

Clos 4K tiles
mesh 4K tiles

(a) shortest-path routing, unloaded network

0

100

200

300

400

500

600

8 16 32 64 128
256

512
1024

2048
4096

A
cc
es
s
la
te
nc
y
(n
s)

Size of emulation (tiles)

DDR3

Clos 1K tiles
mesh 1K tiles

Clos 4K tiles
mesh 4K tiles

(b) two-phase routing, loaded network

0

10

20

30

40

50

60

70

8 16 32 64 128
256

512
1024

2048
4096

O
ve
rh
ea
d
(n
s)

Size of emulation (tiles)

Clos 1K tiles
mesh 1K tiles

Clos 4K tiles
mesh 4K tiles

(c) shortest-path routing, unloaded network, no RMA

0
20
40
60
80
100
120
140
160
180
200

8 16 32 64 128
256

512
1024

2048
4096

O
ve
rh
ea
d
(n
s)

Size of emulation (tiles)

Clos 1K tiles
mesh 1K tiles

Clos 4K tiles
mesh 4K tiles

(d) two-phase routing, loaded network, no RMA

Figure 10.8.: Log-linear plots showing how the memory latency scales for 1,024- and 4,096-tile systems with
SRAM memory as the number of tiles in the emulation increases. (a) and (b) show the absolute
performance with remote memory access to the component tiles; (c) and (d) show the additional
software overhead of using server processes at each tile dealing with the memory accesses.

The results for absolute latency are based on the sequential system and the UPA having the same
clock speed. An increase in clock speed for the sequential system relative to the UPA would only
improve bandwidth because the inherent latency of a DRAM cannot be improved. However an
increase in clock speed for the UPA would improve latency because the network would operate faster.

Benchmark performance

Figure 10.9 shows the performance of the synthetic Dhrystone and compiler benchmarks under a
range of diUerent system parameters. The general behaviour reWects that of Figure 10.8, but with
a mix of emulated global accesses, local accesses and non-memory operations, the overhead of the
emulation is lower. The systems with a Clos interconnect can deliver an emulation with a slowdown
of between 2 to 3 up to 4,096 tiles over the sequential machine. The performance of the 2D mesh with

221

Chapter 10. Performance evaluation of the UPA and sire

1.0

1.5

2.0

2.5

3.0

3.5

4.0

8 16 32 64 128
256

512
1024

2048
4096

Sl
ow

do
w
n

Size of emulation (tiles)

Clos 1K tiles
mesh 1K tiles

Clos 4K tiles
mesh 4K tiles

(a) Dhrystone, shortest-path routing, unloaded network

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

8 16 32 64 128
256

512
1024

2048
4096

Sl
ow

do
w
n

Size of emulation (tiles)

Clos 1K tiles
mesh 1K tiles

Clos 4K tiles
mesh 4K tiles

(b) Dhrystone, two-phase routing, loaded network

0.5

1.0

1.5

2.0

2.5

3.0

8 16 32 64 128
256

512
1024

2048
4096

Sl
ow

do
w
n

Size of emulation (tiles)

Clos 1K tiles
Mesh 1Ki tiles

Clos 4K tiles
Mesh 4Ki tiles

(c) compiler, shortest-path routing, unloaded network

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

8 16 32 64 128
256

512
1024

2048
4096

Sl
ow

do
w
n

Size of emulation (tiles)

Clos 1K tiles
Mesh 1Ki tiles

Clos 4K tiles
Mesh 4Ki tiles

(d) compiler, two-phase routing, loaded network

Figure 10.9.: Log-linear plots of the performance of the synthetic Dhrystone and compiler benchmarks,
relative to the sequential machine, using an emulated memory on 1,024- and 4,096-tile systems.

shortest-path routing is similar to the Clos up to around 1,024 tiles, but the performance degrades
substantially with two-phase randomised routing. In both, the execution of Dhyrstone is less eXcient
due to the higher proportion of global accesses.

In general, as the ratio of global memory operations to local and non-memory operations decreases,
the slowdown does also, converging to a worst case. This is the ratio between the sequential machine
with the DDR3 memory and the parallel emulation shown in Figure 10.8. This trend can be seen in
Figure 10.10, which shows the emulation performance for diUerent proportions of global memory
accesses (between 0% and 50%) in the synthetic benchmark.

Program binary size

Since each memory reference is written as a communication sequence (listed in §10.3.1 [p. 218]),
the size of the program binary increases. For loads, there is an overhead of two instructions and for
stores, there is an overhead of three. For the version of the compiler that uses the emulated memory,

222

10.3. Emulation of large sequential memories

0.0

1.0

2.0

3.0

4.0

5.0

8 16 32 64 128
256

512
1024

Sl
ow

do
w
n

Size of emulation (tiles)

0% 5% 15% 50%

(a) Clos, shortest-path routing, unloaded network

0.0

1.0

2.0

3.0

4.0

5.0

8 16 32 64 128
256

512
1024

Sl
ow

do
w
n

Size of emulation (tiles)

0% 5% 15% 50%

(b) mesh, shortest-path routing, unloaded network

0.0

1.0

2.0

3.0

4.0

5.0

6.0

8 16 32 64 128
256

512
1024

Sl
ow

do
w
n

Size of emulation (tiles)

0% 5% 15% 50%

(c) Clos, two-phase routing, loaded network

0.0

1.0

2.0

3.0

4.0

5.0

6.0

8 16 32 64 128
256

512
1024

Sl
ow

do
w
n

Size of emulation (tiles)

0% 5% 15% 50%

(d) mesh, two-phase routing, loaded network

Figure 10.10.: Log-linear plots showing the emulation slowdown, relative to the sequential machine, over a
range of instruction mixes, with proportions of global accesses varying between 0% to 50%, for
1,024- and 4,096-tile systems. The proportion of local memory access is Vxed at 20%, based on
the Dhrystone and compiler instruction mixes

223

Chapter 10. Performance evaluation of the UPA and sire

the size of its executable binary increased by 8%. This however is a small price compared to the
amount of extra memory that can be provided.

Summary

The absolute access latency of the emulated memory is high, a factor of 3 to 4 times that of a
specialised sequential machine for a Clos system, but the eUect of this is diluted by fast local
accesses and other non-memory operations. For general sequential programs where there is a mix of
operations and 10% to 20% global accesses, the Clos systems can deliver to within a factor of 1.5 to
2.5 of the sequential machine in an unloaded network with shortest path routing. When the network
is loaded and with two-phase randomised routing, this increases to a factor of 2 to 3.

The performance of the 2D mesh is comparable up to around 1,024 tiles when shortest-path routing
is used (a switch diameter of 8), suggesting that it may be practical to use a mesh for systems up
to this size with high-degree switches; or equally that this approach could be applied to existing
mesh-based systems. However, when two-phase randomised routing is used for general parallel
workloads, the performance of the mesh reduces signiVcantly. Furthermore, since the contention
model assumes a uniform distribution of communication traXc, which will only occur with certain
sympathetic workloads, the real performance will likely be worse.

10.4. Discussion

10.4.1. Evaluation of sire

The evaluation of the primitive mechanisms for parallelism and communication in sire establishes
a Vrm basis for the language by proving their eXciency. In combination with the demonstration
in Chapter 7 of the structures that can be expressed and composed with one another, the results
suggest that the choice of features in the language and their implementation provide a good trade-oU
between the simplicity and expressiveness of the language, and the eXciency of its implementation.
However, there were many interesting comparisons drawn, and there are further topics that

warrant explanation. The following points outline several ideas.

• Call request queuing is a primitive aspect of the implementation of sire but it was not considered
in the evaluation. The reason for this is that it was not implemented in the version of the
language used for the evaluation due to time constraints. It would however be interesting to
evaluate because its behaviour depends on the dynamic behaviour of a collection of clients.

• Application to ‘real’ problems. Ultimately, the main reason to employ parallelism is to scale
computational performance. Extending the evaluation to demonstrate the performance of
the sire language and UPA when applied to real problems and demonstrating good parallel
speedups, would be convincing evidence supporting the capability of the approach.
An evaluation of this nature would however depend either on a real implementation of the

UPA or a scalable simulation. It was possible to scale the simulations in this chapter up to 4,096
tiles because the benchmark programs have short execution times (hundreds of thousands of
cycles), but at that size the simulation time for some programs was in excess of 10 minutes. For
‘real’ problems, the working datasets will necessarily be large and the execution time will span
much longer. One approach to constructing scalable simulations is to employ parallelism with
distributed discrete-event simulation [Mis86].

• Network simulation. The performance model used for the evaluation provides an approximation
to shortest-path routing with zero-communication traXc and two-phase randomised routing
with uniform congestion. It could both be improved and validated by directly modelling the
network. This would involve modelling the behaviour of the switching component and the
network interface to the processor.

224

10.4. Discussion

• Latency hiding. To obtain a high utilisation of a system it will be essential to hide communica-
tion latency by allocating multiple processes to each processor. This was discussed at the end
of the last chapter in §8.6.2 [p. 175] but a speciVc scheme was not described in the compilation
chapter because, based on the existing implementation and evaluation, the best way to do this
was not clear.

On the basis of realistic application benchmarks, an evaluation of the eUects of latency
hiding would be essential to establish a good approach to it as well as demonstrating the full
capability of the UPA in executing sire programs.

10.4.2. Emulating large memories with the UPA

Bandwidth scaling

The evaluation uses latency as the primary performance metric and simpliVed models of the parallel
and sequential systems capture the essential aspects of it. Latency is chosen because it is subject to
fundamental physical limits and is inherently diXcult to scale, whereas bandwidth can, in general, be
scaled by replicating components at the cost of area, or increasing transmission rates at the cost of
power.
This is the case with modern DRAMs where bandwidth has been scaled aggressively, driven by

higher transistor densities, whilst latency has scaled very slowly [Pat04]. Consequently, many of the
architectural optimisations employed by modern devices are designed to scale bandwidth involve
replication to exploit parallelism in accesses; the following are the main examples.

• Double data rate (DDR) DRAMs allow two data items to be transferred every cycle, one on each
edge of the clock. This is achieved by replicating a memory and parallelising access to it.10

• Bursting. There is a cost associated with accessing a row in a DRAM and successive reads from
an open page will exhibit lower latency. Memory controllers can issue commands based on
address, scheduling and queuing policies and dynamically reorder outstanding transactions to
best exploit this.

• Multiple channels. Memory systems can be conVgured with multiple channels where entire
ranks of DRAM are replicated and accessed in parallel, providing a data rate increased up to a
factor of the number of channels.

Figure 10.11a shows the average latency in nanoseconds of random reads and writes in successive
generations of DRAM devices, from single data rate (SDR) with a 100 MHz interface to DDR3 (that
was used as a baseline in the evaluation) with a 1.8 GHz interface [Mic12d, Mic12b, Mic12c, Mic12a].
Over these generations, bandwidth has increased by around a factor of 40 while latency has decreased
by around only a factor of 2. This is due mainly to the relatively constant scaling and delay of the
array cores and interconnections. When the access time is measured in cycles (Figure 10.11b) it
increases with respect to operating frequency. This has resulted in modern DRAMs being reliant on
complex memory controllers to exploit reduced latency to accesses in the same row.11

Bandwidth was not considered in the evaluation since architectural optimisations can in principle,
be applied to the parallel system in either the UPA implementation, the emulation, or both. For
example:
10DDR DRAM replicates the core array twice so a transaction can be sent to both simultaneously and data is returned

from one of them on the positive edge of the clock and the other on the negative. DDR2 and DDR3 memory employs
the same idea with four arrays, returning values on each edge two/four clock cycles.

11 A modern DDR3 memory controller maintains a buUer of outstanding transactions for look-ahead to prepare DRAM for
an access, and reordering to mask the latency of accesses to diUerent memory pages [Gre11]. This requires the stream
of transactions to contain correlated bank accesses in the same way super-scalar processors require independence
between sequences of instructions to exploit ILP. With the higher clock rates of DDR4, the situation will continue to
worsen and the beneVts of optimisations implemented in the memory controller will diminish, in the same way they
have done in sequential processors; this was discussed in §9.6.1 [p. 200].

225

Chapter 10. Performance evaluation of the UPA and sire

30

40

50

60

70

80

90

100

110

120

SD
R-100

SD
R-133

D
D
R-167

D
D
R-200

D
D
R2-667

D
D
R2-800

D
D
R2-1066

D
D
R3-1333

D
D
R3-1600

D
D
R3-1866

T
im

e
(n
s)

Operating frequency (MHz)

average read latency
average write latency

(a)

5

10

15

20

25

30

35

SD
R-100

SD
R-133

D
D
R-167

D
D
R-200

D
D
R2-667

D
D
R2-800

D
D
R2-1066

D
D
R3-1333

D
D
R3-1600

D
D
R3-1866

C
yc
le
s

Operating frequency (MHz)

average read latency
average write latency

(b)

Figure 10.11.: Log-linear plots of the average random read and write latency for monolithic DRAM systems as
a function of operating frequency. The data points are speciVc devices that span the generations
of DRAM technology [Mic12d, Mic12b, Mic12c, Mic12a] and the latency was measured with
DRAMSim2. The devices are labelled on the horizontal axis with the notation 〈technology〉-
〈frequency〉. Plot (a) shows the latency in nanoseconds and plot (b) the latency in cycles.

• the interconnect could employ DDR transfers or the frequency could be increased to achieve
the same eUect;

• additional functionality could be added to the memory controller process to implement bursting
and transaction reordering;

• replication could be employed to further utilise the additional capacity in the interconnect.

This choice depends on the desired capabilities of the system and the balance between sequential and
parallel workloads.

Reducing latency in memory emulations

The UPA is conceptually similar to a modern DRAM system, both having a collection of inter-
connected memories. The main additions are processors, a more complex switch between link
connections and a greater provisioning of interconnect resources to support general concurrent
communications.
Access to a DRAM system consists of request and reply components sent over the interconnect.

Messages experience delay through components such as the processor and memory controllers, on
connections between these from crossing between diUerent clock domains and in transmission on
long busses, and from the DRAM itself. The interface to the memory is integrated into the processor
instruction set and a program simply executes a load or store instruction to perform an access.
DRAM memory systems have been heavily optimised for this speciVc case. An access to an emulated
memory also consists of request and reply components and the latency experienced by these will
be dependent on software and hardware delays through the processor, time domain crossing and
transmission on links. Additional latency is contributed by serialisation of data on to narrow links,
the link between the memory and the interconnect and the switches along the path through the
network.

226

10.4. Discussion

Access latency could be further reduced in the UPA emulation, to approach that of conventional
DRAMs. The following improvements could provide signiVcant beneVts.

• Switch latency. The latency model was calibrated against measurements made with the XMP-64,
but the implementation of the switch in the XS1 G4 chips was synthesised automatically, which
potentially adds a factor of 2 to 3 times the latency in the critical path over a manual layout.
This could reduce the switch latency to 1 cycle and overhead to open a route to 2 cycles; other
designs can achieve this kind of performance, for an example see Kumary et al. [KKS+07] or
Mullins, West and Moore [MWM04].

• Hardware generation of memory references. The emulation scheme described in this chapter
employs a software memory controller. This could be implemented alternatively in hardware
as part of the ISA, in order that load and store instructions accessing particular address ranges
are converted into messages and sent on the interconnect in a single cycle.

Performance trade-offs

A balance must be struck between the sequential and parallel capabilities of an implementation of the
UPA. The extent to which the system is geared towards sequential programming by using powerful
sequential processors or an interconnect that is specialised to deal with memory accesses depends on
the workloads for which it is intended.
One potential scenario is that early generations of the architecture could be specialised in these

ways in order to facilitate a transition away from conventional shared-memory systems. Then,
as workloads change and become more parallel, the capability of later generations would change
accordingly. Because the specialisations are applied to the implementation (in a homogeneous or
heterogeneous way), the same architecture is maintained and so it does not impact the programming
model. This is an essential feature of a general-purpose design.

Extensions

There is great potential for ways in which the UPA scheme for sequential execution could be extended
to further exploit the underlying architecture. These possibilities stem from the signiVcant capability
of the interconnect and programmability of the system.
The following points outline several ideas. For the direct compilation of sequential programs on

the architecture, most of these could be integrated into the compilation process transparently to
the programmer; the resulting performance beneVts could surpass the performance of conventional
systems.

• On-the-Wy processing. With a processor associated with and mediating access to each memory
in the system, data read and written in remote memories could be processed on-the-Wy. In
particular, compression could be applied before sending messages to increase throughput and
reduce latency.

• In-place processing. Overheads of data movement could be signiVcantly reduced by moving
processes to the processor storing particular data to operate on it in-place in local memory,
rather than transferring it back and forth as is the case with conventional memory systems.

• Concurrent access. Unlike a conventional DRAM, an emulated memory can easily be extended
to support concurrent access (see the ParallelRAM server in §7.2.4 [p. 123]). A sequence of
reads from distinct locations, which might occur as terms in an expression, could be issued
simultaneously. The eUective cost of this sequence would then be similar to that of a read.

• Debugging and proVling. Since all memory requests are issued as messages sent on the
interconnect, they could be intercepted and inspected to provide debugging or proVling
information.

227

Chapter 10. Performance evaluation of the UPA and sire

• Caching. The memory emulation could be extended to implement a caching scheme, similar to
the CachedRAM server in §7.2.4 [p. 121]. Furthermore, the caching scheme employed could be
optimised by the programmer, or even in the compilation process, to match the characteristics
of the program that it serves.

• Low-power states. With single large memories it is likely that portions of the address space will
be inactive for long periods. During these periods, the memories and processors of individual
tiles could either be switched oU or placed in a low-power state to reduce overall power
consumption.

• Reducing system granularity. Multiple instances of the memory emulation scheme could be run
in parallel to emulate a parallel machine with a larger memory capacity per tile, eUectively
reducing the granularity of the system.

228

CHAPTER 11.

SUMMARY AND CONCLUSIONS

11.1. Background

The use of general-purpose programmable machines called computers, since their inception in the
early 20th century, has become almost ubiquitous. Their success has stemmed from the ability to
be programmed according to a simple computational model and to be applied to any problem with
a reasonable degree of eXciency. This, coupled with large markets and sympathetic implemen-
tation technologies, has provided economies of scale and continued substantial improvements in
performance and reduction in size.
The conventional universal sequential model of computation, eXciently embodied by the von

Neumann architecture, has underpinned these advances but it has exhausted the capabilities of known
technologies to scale performance. Now, parallelism is the only known means to sustain performance
but the prevailing reaction has been evolutionary by extending the von Neumann machines with
additional processors. This approach maintains the conventional abstraction of a large randomly
accessible memory (and even compatibility with legacy programs) but it does not scale.
There are known techniques for building scalable parallel machines that have a single shared

address space, but even so, shared memory has proven to be ineUective in dealing with large amounts
of parallelism. This is evident from the fact that the only programming approach that has and can
endure, is MPI. The reason for this is clear; shared memory is fundamentally at odds with parallelism
because it hides communication, with the result that communication is both diXcult to express and
ineXcient. These problems restrict shared memory to limited forms of parallelism and complicates
the process of compilation for (scalable) distributed architectures, and these problems are exacerbated
by the programming issues of non-determinism and formal veriVcation.
In contrast to shared memory, message passing is simple, general, eXcient and can be formalised;

but surprisingly, it has not received a great deal of attention. The reason for this can be attributed
largely to preoccupation with sequential microprocessor performance and that also, in the relatively
small HPC community, MPI has suXced. However, as implementation technologies continue to
improve, computers can be increasingly embedded to facilitate the advancement of exciting new areas
such as medical equipment, clothing, the home environment and robotics. In these applications,
computers will be applied to the problems of sensing, interaction and decision making, and so will
need to exploit a variety of forms of parallelism.
Embedded computing applications will continue to demand the development of a wide variety of

devices with complex capabilities. Because much of the software has yet to be written, there is a
substantial opportunity for a new standard form of parallel computing to provide this, analogous to
that of general-purpose sequential computing with the von Neumann architecture and languages
like C. The utility of a such a model is clear: it enables high-volume production and optimised
manufacturing processes and supports standardisation across programming languages, tools and
machine implementations, providing portability of programs between current machines and future
generations as they develop with future technology.

229

Chapter 11. Summary and conclusions

11.2. Contributions

This thesis has demonstrated the essential aspects of a standard model of parallel computation by
proposing a scalable universal parallel architecture, the UPA, a high-level programming language
designed for it called sire and a compilation scheme to transform sire programs to execute eXciently
on the UPA.

The crucial advantage of this model over others (in particular the PRAM and BSP [Val90a]) is that
it allows a wide class of parallel programs to be expressed. It does this by using message passing as a
basis and combining mechanisms for sharing with it to support both programming structures with
Vxed communication patterns such as process networks, and structures that do not, such as shared
data structures.

11.2.1. The UPA design

The UPA was described in Chapter 5. It is a distributed-memory parallel computer architecture with
a high-performance universal interconnection network that connects an array of processor-memory
tiles that use the XMOS XS1 processor core [May09]. The UPA design draws on Valiant’s theory
of universal parallel communication networks [Val90b] and known approaches to building parallel
computers, particularly on the design of the C104 switch [MTW93, Ch. 3].
The speciVc contributions of the UPA design are the combination of network topology, switching

and processor architecture that produce a balanced general-purpose system. The result is an archi-
tecture that can support a range of programming techniques and the execution of highly-parallel
programs as well as sequential ones with large memory requirements.
The folded Clos network (closely related to a fat tree) provides the necessary properties for

universality, it supports universal two-phase randomised routing eXciently and its structure oUers a
signiVcant degree of Wexibility in an implementation by allowing the use of arbitrary Vxed-degree
switches, the bisection bandwidth to be adjusted, and a hierarchical packaging using diUerent
technologies. The network implementation supports low-latency communication of arbitrary-sized
messages and memory accesses using wormhole routing. XS1 processor cores further minimise
communication latency with an optimised network interface and they provide low-level support for
parallelism with eXcient mechanisms for creating, synchronising and terminating processes.
The UPA is simple to implement and it allows particular implementations to be easily specialised

whilst maintaining the same programming model by adjusting the network bandwidth to meet the
limitations of an implementation or by optimising the system for particular workloads by changing
the balance of processing to memory.

11.2.2. The sire programming language design

The sire programming language was deVned in Chapter 6, complete syntax given in Appendix A and
illustrative examples of its use were given in Chapter 7. Sire builds on the formalism of CSP [Hoa78]
and the approach of occam [May83], and is designed to be the natural language for programming
the UPA, with which it is easy to express programs that deal with large amounts of distributed
parallelism.

Sire builds on occam principally by integrating a mechanism for sharing on a message-passing
framework by introducing the concept of a server as a primitive in the language. This is signiVcant
because it combines the essential capabilities of (conventional) shared-memory programming with
the beneVts of message passing. With mechanisms for combining collections of servers, sire provides
powerful capabilities for abstraction with distributed parallel programs that are fundamentally
important to a discipline of programming:

• to separate distributed representations of data from the computational components of a pro-
gram, to build scalable data structures;

230

11.2. Contributions

• for distributed parallelism to be employed freely and embedded in sequence, giving rise to a
mechanism for parallel subroutines;

• for the arbitrary composition of program components to create modular hierarchical program
structures.

Servers provide some additional abilities and beneVts for the programmer:

• as way of dealing explicitly with data locality and movement of program code to the data on
which it operates;

• with declaration syntax similar to standard variables, a program can be composed in a conven-
tional way as a sequence of declarations followed by a sequence of operations or subroutines;

• with call syntax similar to local procedure calls, programs can be easily refactored to employ
servers to introduce parallelism or data distribution.

In terms of the language design, servers provide an elegant way to deal with all aspects of
abstraction involving communication. This removes the need for named communication channels
that occam and the later version of CSP have, instead a process-naming mechanism can be used,
which signiVcantly simpliVes the distributed implementation.

The overall design of sire allows it to be compiled using simple techniques and therefore for its
primitive operations to correspond closely to the operation of the UPA. Apart from the immediate
beneVts of eXciency and predictability for the programmer, this additionally places the language in a
position where it can be used to implement low-level distributed ‘system’ functionality. For example,
it can be used to build components usually realised in hardware such as memories with a particular
consistency model, caches to improve locality and facilities for hashing, replication and combining to
manage distributed data; or even used as a basis to implement other programming languages.

11.2.3. Compilation of sire programs to the UPA

The sire compilation scheme was described in Chapter 8. The compilation is divided into two parts;
the Vrst is a set of program transformations that reduce a sire program into a simpliVed canonical
form. This approach is beneVcial because the output is understandable by the programmer and only
the small canonical subset needs to be implemented. The second is the generation of machine code
and description of the run-time kernel. This was presented with detailed instruction listings for
each (unconventional) feature of sire to demonstrate that it is capable of being compiled into short
instruction sequences and that there is no hidden complexity.
In addition to the direct mapping of sire notations to machine operations, its design facilitates

two enhancements to compilation and program execution. First, sire processes can be mapped to
processors according to a static schedule that is determined during compilation, so that processors do
not need to be allocated and deallocated at run time and the overhead of using distributed parallelism
is minimal. Second, the distribution of program code can be performed at run time, which creates
a number of beneVts. For the compilation scheme, this decouples the compilation process (and its
execution time) from the number of processors in the target system and allows a minimal program
binary to be produced. For the execution of a program, it allows a system to be booted rapidly by
replicating a single binary and during execution it makes a run-time reuse of processor memory,
which is essential when memory is limited.

A crucial issue with the compilation of sire programs is the prevention of deadlock from many-to-
one server channels, caused by client requests preventing a server from engaging in communication.
This is dealt with by servers queuing client requests locally and causing the client to wait, and only
completing a call when the server is ready.

231

Chapter 11. Summary and conclusions

11.2.4. Performance evaluation of the UPA and sire

Chapter 9 presented a high-level model for an implementation of the UPA, which integrates a com-
plete sub-folded Clos network onto a single chip and uses a silicon interposer to build larger systems
with multiple chips. The model demonstrates that despite the apparently high costs of universal com-
munication networks, even with current production technology, there is only a moderate overhead.
In a system that connects between up to 4,096 processors, the overall investment is around 20% to
30% of total cost, compared to around 5% with the popular 2D mesh topology (which is not universal
and therefore unsuitable for general-purpose systems).
Chapter 10 used the implementation model to inform a simple performance model for the UPA.

The performance model was integrated into a software simulation of the UPA and used to evaluate
the performance of speciVc programs. Results for a set of microbenchmarks that exercise the primitive
mechanisms for parallelism, communication and abstraction in sire conVrm they are all very low
cost; remote server calls, performed over the network have an overhead of 8 to 20 times that of
local calls, processes can be oYoaded to remote processors if they exceed several tens of thousands
of basic operations (around 10 µs to 60 µs at 1 GHz) and the mechanism for process distribution,
which underpins the basic subroutine mechanism, can bring thousands of processors into action in a
period of several hundred thousand operations (4,096 tiles in around 200 µs at 1 GHz). Furthermore,
these results are compositional in that they are independent of the parallel workload being executed
because the network delivers bounded latency for all communication patterns.

The Vnal part of the empirical investigation looked at the ability of the UPA to support sequential
programming techniques by emulating large memories with collections of tiles. This demonstrated
that general sequential programs can be executed with a reasonable degree of eXciency (a factor
of 2 to 3 overhead) when compared to contemporary sequential machines. The ability to execute
sequential programs eXciently is signiVcant because, despite parallelism being the primary means of
scaling performance, many problems exhibit little or no parallelism and many existing formulations
are sequential. It could therefore facilitate a transition from sequential machines by allowing existing
programs to be compiled directly to the UPA and then for their performance to be improved either
through new compiler optimisations or by changing the program to use parallelism.

11.3. Conclusions and future work

A preoccupation with sequential performance has meant that there has been relatively little develop-
ment of general-purpose models of parallel computation, and indeed, of scalable parallel architectures
outside of HPC. Consequently, there are remarkably few scalable (but non-cluster-based) parallel
architectures that are intended for general-purpose use. This is reWected in the variety of existing
parallel programming models that in general are heavily biased towards shared memory; of these,
only a few message-passing approaches have proven to be simple to use and to scale. There is both a
huge potential for innovation in parallel architectures and programming models that can support
large amounts of parallelism and a signiVcant opportunity for them to advance unexplored areas of
embedded computing.

The work in this thesis has investigated the potential for scalable general-purpose parallel comput-
ing by developing practical proposals for an architecture, a programming language and a compilation
scheme. In doing so, it has had to work from the gritty details of a hypothetical implementation, all
the way to the high-level issues of program structuring. To manage this, the approach has been to use
Ockham’s razor wherever possible to produce a minimal design, and the approach of the empirical
work was to consider as far as possible the high-level trade-oUs and scaling issues. This has both left,
and led to, a host of opportunities for extension and further questions; the discussions at the end of
each chapter have provided starting points for future work.

232

BIBLIOGRAPHY

[ABC+06] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson,
W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The landscape of parallel
computing research: A view from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[ACH+05] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. W. Maessen, S. Ryu, G. L. Steele Jr,
S. Tobin-Hochstadt, J. Dias, C. Eastlund, et al. The Fortress language speciVcation. Sun
Microsystems, 139:140, 2005.

[ACJ+91] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara, B. H. Lim,
G. Maa, and D. Nussbaum. The MIT Alewife machine: A large-scale distributed memory
multiprocessor. Technical Report 454, MIT/LCS, 1991. Also in Scalable Shared Memory
Multiprocessors, Kluwer Academic Publishers.

[Ada11] Adapteva Inc. 1024-core 70GFLOP/W Woating-point manycore microprocessor, October
2011. Whitepaper.

[AG96] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE
Computer, 29(12):66–76, 1996.

[Agh85] G. A. Agha. Actors: a model of concurrent computation in distributed systems. Technical
Report AITR-844, MIT, June 1985.

[AGJP11] Darren Anand, Kevin Gorman, Mark Jacunski, and Adrian Paparelli. Embedded DRAM in
45-nm technology and beyond. IEEE Design & Test of Computers, 28:14–21, January 2011.

[AHMP87] H. Alt, T. Hagerup, K. Mehlhorn, and F. P. Preparata. Deterministic simulation of idealized
parallel computers on more realistic ones. SIAM Journal on Computing, 16(5):808–835,
1987.

[AJS05] Ali E. Abdallah, CliU B. Jones, and JeUW. Sanders. Communicating Sequential Processes.
The First 25 Years: Symposium on the Occasion of 25 Years of CSP, London, UK, July 7-8,
2004. Revised Invited Papers, volume 3525. Springer, 2005.

[Ame83] American National Standards Institute. Reference Manual for the ADA Programming
Language. Silicon Press, 1983.

[ARK10] R. Alverson, D. Roweth, and L. Kaplan. The Gemini system interconnect. In IEEE 18th
Annual Symposium on High Performance Interconnects (HOTI), pages 83–87. IEEE, 2010.

[Arl88] R. Arlauskas. iPSC/2 system: a second generation hypercube. In Proceedings of the third
conference on Hypercube concurrent computers and applications: Architecture, software,
computer systems, and general issues-Volume 1, pages 38–42. ACM, 1988.

[ARM12a] ARM Ltd. Cortex-A9 processor, 2012. Technical speciVcation.

[ARM12b] ARM Ltd. Cortex-M0 processor, 2012. Technical speciVcation.

[AS07] B. Agrawal and T. Sherwood. Guiding architectural SRAM models. In International
Conference on Computer Design, pages 376–382. IEEE, 2007.

233

Bibliography

[Bac78] John Backus. Can programming be liberated from the von neumann style?: A functional
style and its algebra of programs. Communications of the ACM, 21(8):613–641, August
1978.

[Bak90] H. Buman Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley,
1990.

[Bar92] GeoU Barrett. occam 3 reference manual. INMOS Ltd., Bristol, UK, March 1992.

[BBG+93] F. Bodin, P. Beckman, D. Gannon, S. Narayana, and S. X. Yang. Distributed pC++ basic
ideas for an object parallel language. ScientiVc Programming, 2(3):7–22, 1993.

[BCC+88] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore, C. Peterson,
J. Pieper, L. Rankin, P. S. Tseng, J. Sutton, J. Urbanski, and J. Webb. iWarp: an integrated
solution to high-speed parallel computing. In Proceedings of the ACM/IEEE conference on
Supercomputing, pages 330–339, November 1988.

[BCM94] E. Barton, J. Cownie, and M. McLaren. Message passing on the Meiko CS-2. Parallel
Computing, 20(4):497–507, 1994.

[BD06] J. Balfour and W. J. Dally. Design tradeoUs for tiled CMP on-chip networks. In Proceedings
of the ACM/IEEE conference on Supercomputing, ICS ’06, pages 187–198. ACM, 2006.

[BDG+91] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. A users’ guide to PVM
(parallel virtual machine). Technical report, Oak Ridge National Laboratory, TN, 1991.

[BDH+08] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and J. C. Sancho. Enter-
ing the petaWop era: The architecture and performance of Roadrunner. In International
Conference for High Performance Computing, Networking, Storage and Analysis, November
2008.

[BDMF10] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. Evolution of thread-level parallelism
in desktop applications. ACM SIGARCH Computer Architecture News, 38(3):302–313, 2010.

[Ben65] V. E. Beneš. Mathematical Theory of Connecting Networks and Telephone TraXc. Mathe-
matics in Science and Engineering. Academic Press, 1965.

[BH85] A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on parallel models of
computation. Journal of Computer and System Sciences, 30(1):130–145, 1985.

[BHMS91] Mark Bromley, Steven Heller, Tim McNerney, and Guy L. Steele, Jr. Fortran at ten
gigaWops: the Connection Machine convolution compiler. In Proceedings of the ACM
SIGPLAN conference on Programming language design and implementation, PLDI ’91, pages
145–156. ACM, 1991.

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: an eXcient multithreaded runtime system. ACM
SIGPLAN Notices, 30(8):207–216, 1995.

[BJW07] M. Butts, A. M. Jones, and P. Wasson. A structural object programming model, architec-
ture, chip and tools for reconVgurable computing. In 15th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 55–64, April 2007.

[BK94] Ray Barriuso and Allan Knies. SHMEM user’s guide for C. Technical report, Cray
Research Inc., 1994.

234

Bibliography

[Ble90] G. E. Blelloch. PreVx sums and their applications. In John H. Reif, editor, Synthesis of
Parallel Algorithms. Morgan-Kaufmann, 1990.

[Ble95] G. E. Blelloch. NESL: A nested data-parallel language. Technical Report CMU-CS-95-170,
Carnegie Mellon University, September 1995. Version 3.1.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions on
Computer Systems, 2(1):39–59, 1984.

[BO84] Marsha J Berger and Joseph Oliger. Adaptive mesh reVnement for hyperbolic partial
diUerential equations. Journal of Computational Physics, 53(3):484 – 512, 1984.

[Bok90] Shahid H. Bokhari. Communication overhead on the Intel iPSC-860 hypercube. Technical
report, Institute for Computer Applications in Science and Engineering, NASA, 1990.
ICASE interim report 10.

[Bon02] Dan Bonachea. GASNet speciVcation. Technical Report CSD-02-1207, UC Berkeley,
October 2002. Version 1.1.

[Bor07] S. Borkar. Thousand core chips: a technology perspective. In Proceedings of the 44th
annual Design Automation Conference, DAC ’07, pages 746–749. ACM, 2007.

[BPN+10] J. Barth, D. Plass, E. Nelson, C. Hwang, G. Fredeman, M. Sperling, A. Mathews, W. Reohr,
K. Nair, and N. Cao. A 45nm SOI embedded DRAM macro for POWER7 32MB on-chip
L3 cache. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International, pages 342–343. IEEE, 2010.

[BS81] F. W. Burton and M. R. Sleep. Executing functional programs on a virtual tree of
processors. In Proceedings of the conference on Functional programming languages and
computer architecture, pages 187–194. ACM, 1981.

[BSC+93] G. E. Blelloch, Chatterjee S., Hardwick J. C., Sipelstein J., and Zagha M. Implementation
of a portable nested data-parallel language. In Proceedings 4th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 102–111, May 1993.

[Can69] Lynn Elliot Cannon. A cellular computer to implement the Kalman Filter algorithm. PhD
thesis, Montana State University Bozeman Engineering Research Laboratories, 1969.

[CCD+11] B. L. Chamberlain, S. E. Choi, S. J. Deitz, D. Iten, and V. Litvinov. Authoring user-deVned
domain maps in Chapel. In Cray Users Group Conference (CUG), 2011.

[CCDN11] B. L. Chamberlain, S. E. Choi, S. J. Deitz, and A. Navarro. User-deVned parallel zippered
iterators in Chapel. In Proceedings of the Fifth Conference on Partitioned Global Address
Space Programming Models, 2011.

[CCZ07] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmability and the
Chapel language. International Journal of High Performance Computing Applications,
21(3):291–312, 2007.

[CD90] A. A. Chien and W. J. Dally. Concurrent aggregates (CA). In ACM Sigplan Notices,
volume 25 of 3, pages 187–196. ACM, 1990.

[CDC+99] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren. Introduction
to UPC and language speciVcation. Technical Report CCS-TR-99-157, IDA Center for
Computing Sciences, 1999.

235

Bibliography

[CEH+11] Dong Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S. Kumar, V. Sala-
pura, D. L. SatterVeld, B. Steinmacher-Burow, and J. J. Parker. The IBM Blue Gene/Q
interconnection network and message unit. In Proceedings of the ACM/IEEE conference on
Supercomputing, pages 1–10, November 2011.

[CG95] P. Caspi and A. Girault. Execution of distributed reactive systems. In Proceedings of the
1st International Euro-Par conference on Parallel Processing, pages 13–26. Springer, 1995.

[CGL86] N. Carriero, D. Gelernter, and J. Leichter. Distributed data structures in Linda. In
Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 236–242. ACM, 1986.

[CGS+05] P. Charles, C. GrothoU, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. Von Praun,
and V. Sarkar. X10: an object-oriented approach to non-uniform cluster computing. In
ACM SIGPLAN Notices, volume 40, pages 519–538. ACM, 2005.

[CJ87] N. J. Carriero Jr. Implementation of tuple space machines. Technical Report Research
Report YALEU/DSC/RR-567, Yale University, December 1987.

[CK93] K. Chandy and C. Kesselman. Compositional C++: Compositional parallel programming.
Languages and Compilers for Parallel Computing, 1:124–144, 1993.

[CLC+98] B. L. Chamberlain, C. Lin, S. E. Choi, L. Snyder, EC Lewis, and W. D. Weathersby. ZPL’s
WYSIWYG performance model. In Proceedings of the third International Workshop on
High-Level Parallel Programming Models and Supportive Environments, pages 50–61. IEEE,
1998.

[Cle06] Clearspeed Ltd. Clearspeed CSX processor architecture. Technical Report PN-1110-0306,
2006.

[Clo53] C. Clos. A study of non-blocking switching networks. Bell System Technical Journal,
32(2):406–424, March 1953.

[CMD+00] Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan, and JeU McDon-
ald. Parallel programming in OpenMP. Morgan Kaufmann, 2000.

[CMZ92] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. ScientiVc
Programming, 1(1):31–50, 1992.

[Col89] M. I. Cole. Algorithmic skeletons: structured management of parallel computation. MIT
Press & Pitman, 1989.

[CT89] K. M. Chandy and S. Taylor. The composition of concurrent programs. In Proceedings of
the ACM/IEEE conference on Supercomputing, pages 557–561. ACM, 1989.

[CW79] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of computer
and system sciences, 18(2):143–154, 1979.

[DA93] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer networks
using virtual channels. IEEE Transactions on Parallel and Distributed Systems, 4(4):466–475,
1993.

[Dal90] W. J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE
Transactions on Computers, 39(6):775–785, 1990.

[Dal92] W. J. Dally. Virtual-channel Wow control. IEEE Transactions on Parallel and Distributed
Systems, 3(2):194 –205, March 1992.

236

Bibliography

[Dav00] C. David. An experiment with recursion in occam. In Peter H. Welch and Andrè W. P.
Bakkers, editors, Communicating Process Architectures WoTUG-23: Proceedings of the 23rd
World occam and Transputer User Group Technical Meeting, volume 30, page 193. IOS Press,
2000.

[dBE46] N. G. de Bruijn and P. Erdos. A combinatorial problem. Koninklijke Netherlands: Academe
Van Wetenschappen, 49:758–764, 1946.

[DCC+98] W. J. Dally, L. Chao, A. Chien, S. Hassoun, W. Horwat, J. Kaplan, P. Song, B. Totty, and
S. Wills. Architecture of a message-driven processor. In 25 years of the international
symposia on Computer architecture (selected papers), pages 337–344. ACM, 1998.

[DDH72] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured programming. Academic Press
Ltd., 1972.

[DeH00] André DeHon. Compact, multilayer layout for butterWy fat-tree. In Proceedings of the
twelfth annual ACM symposium on Parallel algorithms and architectures, SPAA ’00, pages
206–215. ACM, 2000.

[DFH+93] J. Darlington, A. Field, P. Harrison, P. Kelly, D. Sharp, Q. Wu, and R. While. Parallel
programming using skeleton functions. In Parallel Architectures and Languages Europe
(PARLE), pages 146–160. Springer, 1993.

[DFK+92] W. J. Dally, J. A.S. Fiske, J. S. Keen, R. A. Lethin, M. D. Noakes, P. R. Nuth, R. E. Davison,
and G. A. Fyler. The message-driven processor: A multicomputer processing node with
eXcient mechanisms. IEEE Micro, 12(2):23–39, 1992.

[DFMP08] R. Dimond, M. J. Flynn, O. Mencer, and O. Pell. MAXware: acceleration in HPC. In
Proceedings of 20th IEEE HOT CHIPS conference, 2008.

[DG08] J. Dean and S. Ghemawat. MapReduce: simpliVed data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[DGTY95] J. Darlington, Y. Guo, H. W. To, and J. Yang. Parallel skeletons for structured composition.
ACM SIGPLAN Notices, 30(8):19–28, 1995.

[DKM+12] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark Horowitz. CPU
DB: Recording microprocessor history. Communications of the ACM, 55(4):55–63, April
2012.

[DR81] J. Darlington and M. Reeve. ALICE: a multi-processor reduction machine for the parallel
evaluation CF applicative languages. In Proceedings of the conference on Functional
programming languages and computer architecture, FPCA ’81, pages 65–76. ACM, 1981.

[DT03] W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan
Kaufmann, 2003.

[DW89] W. J. Dally and D. Wills. Universal mechanisms for concurrency. In Eddy Odijk, Martin
Rem, and Jean-Claude Syre, editors, Parallel Architectures and Languages Europe (PARLE),
volume 365 of Lecture Notes in Computer Science, pages 19–33. Springer, 1989.

[DWR95] A. Douglas, A. Wood, and A. Rowstron. Linda implementation revisited. Transputer and
Occam developments, pages 125–138, 1995.

[Elp11] Elpida Memory, Inc. Elpida begins sample shipments of DDR3 SDRAM (x32) based on
TSV stacking technology, June 2011. Press release.

237

Bibliography

[ESS04] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: Programming for hierarchical parallelism
and non-uniform data access (extended abstract). In Language Runtimes Workshop: Impact
of Next Generation Processor Architectures on Virtual Machines (colocated with OOPSLA
2004), October 2004.

[FCO90] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report on the Sisal language project. Journal
of Parallel and Distributed Computing, 10(4):349–366, 1990.

[FHK+90] GeoUrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Ulrich Kremer, Chau-
Wen Tseng, and Min-You Wu. Fortran D language speciVcation. Technical report, Center
for Research on Parallel Computation, Rice University, Houston, 1990.

[FKT90] I. Foster, C. Kesselman, and S. Taylor. Concurrency: Simple concepts and powerful tools.
The Computer Journal, 33(6):501–507, 1990.

[Flo79] R. W. Floyd. The paradigms of programming. Communications of the ACM, 22(8):455–460,
1979.

[FM11] Samuel H. Fuller and Lynette I. Millett, editors. The Future of Computing Performance:
Game Over or Next Level? National Acadamies Press, 2011.

[Fos93] I. Foster. Strand and PCN: Two generations of compositional programming languages.
Technical Report CRPC-TR93446, Center for Research on Parallel Computation, Rice
University, 1993.

[Fos95] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software
Engineering. Addison-Wesley Longman Publishing, 1995.

[Fos96] I. Foster. Compositional parallel programming languages. ACM Transactions on program-
ming languages and systems, 18(4):454–476, July 1996.

[FOT92] I. Foster, R. Olson, and S. Tuecke. Productive parallel programming: The PCN approach.
ScientiVc Programming, 1(1):51–66, 1992.

[FT90] Ian Foster and Stephen Taylor. Strand: new concepts in parallel programming. Prentice-
Hall, Inc., 1990.

[FU92] R. Feldmann and W. Unger. The cube-connected cycles network is a subgraph of the
butterWy network. Parallel Processing Letters, 02(01):13–19, 1992.

[FW78] Steven Fortune and James Wyllie. Parallelism in random access machines. In Proceedings
of the tenth annual ACM symposium on Theory of computing, STOC ’78, pages 114–118.
ACM, 1978.

[FXA94] I. Foster, M. Xu, and B. Avalani. A compilation system that integrates High Performance
Fortran and Fortran M. In Proceedings of the Scalable High-Performance Computing
Conference, pages 293–300. IEEE, 1994.

[GBC+05] A. Gara, M. A. Blumrich, D. Chen, L-T G. Chiu, P. Coteus, M. E. Giampapa, R. A. Haring,
P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-
Burow, T. Takken, and P. Vranas. Overview of the Blue Gene/L system architecture. IBM
Journal of Research and Development, 49(2):195–212, March 2005.

[GC92] D. Gelernter and N. Carriero. Coordination languages and their signiVcance. Communi-
cations of the ACM, 35(2):96, 1992.

238

Bibliography

[GC94] B. Gendron and T. G. Crainic. Parallel branch-and-bound algorithms: Survey and synthe-
sis. Operations Research, 42(6):1042–1066, 1994.

[Gel85] D. Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

[GGK+82] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliUe, L. Rudolph, and M. Snir. The
NYU Ultracomputer - designing a MIMD, shared-memory parallel machine (extended
abstract). SIGARCH Computer Architecture news, 10(3):27–42, April 1982.

[GKKG03] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta. Introduction to Parallel
Computing. Addison-Wesley, second edition, January 2003.

[GKW85] J. R. Gurd, C. C. Kirkham, and I. Watson. The Manchester prototype dataWow computer.
Communications of the ACM, 28(1):34–52, 1985.

[GL88] Ronald I. Greenberg and Charles E. Leiserson. A compact layout for the three-dimensional
tree of meshes. Applied Mathematics Letters, 1(2):171–176, 1988.

[GL95] W. D. Gropp and E. Lusk. Dynamic process management in an MPI setting. In Proceedings
of the 7th IEEE Symposium on Parallel and Distributed Processing, pages 530–533. IEEE,
1995.

[GL96] Ronald I. Greenberg and Charles E. Leiserson. Randomized routing on fat-trees. In
Advances in Computing Research, pages 345–374. JAI Press, 1996.

[Gon81] G. H. Gonnet. Expected length of the longest probe sequence in hash code searching.
Journal of the ACM, 28(2):289–304, 1981.

[Goo13] Google Inc. The oXcial Go Language speciVcation, November 2013.

[Got86] A. Gottlieb. An overview of the NYU Ultracomputer project. Experimental Parallel
Computing Architectures, pages 25–95, 1986.

[Gre11] M. Greenberg. DDR4, higher speeds and larger SoCs: Why external memory latency is
getting worse, and what to do about it, November 2011. ARM TechCon 2011.

[Gro92] W. D. Gropp. Parallel computing and domain decomposition. In Fifth International Sym-
posium on Domain Decomposition Methods for Partial DiUerential Equations, Philadelphia,
PA, 1992.

[Han77] P. B. Hansen. Design principles. In The Architecture of Concurrent Programs, pages 3–14.
Prentice Hall, July 1977.

[Han78] P. B. Hansen. Distributed processes: A concurrent programming concept. Communications
of the ACM, 21(11):934–941, 1978.

[Han87] P. B. Hansen. Joyce—A programming language for distributed systems. Software: Practice
and Experience, 17(1):29–50, 1987.

[Han90] P. B. Hansen. The nature of parallel programming. Natural and ArtiVcal Parallel Computa-
tion, (Arbib, M. A. and Ribinson J. A., Eds.), pages 31–46, 1990. The MIT Press, Cambridge,
MA.

[Han94] P. B. Hansen. SuperPascal: A publication language for parallel scientiVc computing. In
The origin of concurrent programming: from semaphores to remote procedure calls, pages
495–524. Springer-Verlag, 1994.

239

Bibliography

[Han95a] P. B. Hansen. EXcient parallel recursion. ACM SIGPLAN Notices, 30(12):9–16, 1995.

[Han95b] P. B. Hansen. Studies in computational science: parallel programming paradigms. John
Wiley and Sons, Ltd., 1995.

[Han09] James Hanlon. XMP-64 performance measurements. XMOS Ltd., Bristol, UK, 2009.

[HBB+95] J. Harris, J. A. Bircsak, M. R. Bolduc, J. A. Diewald, I. Gale, N. W. Johnson, S. Lee, C. A.
Nelson, and C. D. OUner. Compiling High Performance Fortran for distributed-memory
systems. Digital Technical Journal, 7(3):5–23, 1995.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data Wow program-
ming language LUSTRE. Proceedings of the IEEE, 79(9):1305 –1320, September 1991.

[HDH+10] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,
N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Er-
raguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van der Wijngaart, and T. Mattson. A 48-
core IA-32 message-passing processor with DVFS in 45nm CMOS. In Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, pages 108–109,
Feburary 2010.

[Hey90] A. Hey. Experiments in MIMD parallelism. Future Generation Computer Systems, 6(3):185–
196, December 1990.

[HG85] P. Hudak and B. Goldberg. Distributed execution of functional programs using serial
combinators. IEEE Transactions on Computers, 100(10):881–891, 1985.

[HKwT92a] Seema Hiranandani, Ken Kennedy, and Chau wen Tseng. Compiling Fortran D for
MIMD distributed-memory machines. Communications of the ACM, 35:66–80, 1992.

[HKwT92b] Seema Hiranandani, Ken Kennedy, and Chau wen Tseng. Evaluation of compiler
optimizations for Fortran D on MIMD distributed-memory machines. In Proceedings of
the 6th international conference on Supercomputing, pages 1–14. ACM, 1992.

[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin
of the American Mathematical Society, 43(4):439–562, 2006.

[HMH01] Ron Ho, Ken Mai, and Mark Horowitz. The future of wires. Proceedings of the IEEE,
89(4):490–504, 2001.

[HMH03] Ron Ho, Ken Mai, and Mark Horowitz. EXcient on-chip global interconnects. In
Symposium on VLSI Circuits, Digest of Technical Papers, pages 271–274. IEEE, 2003.

[HMS+86] John P. Hayes, Trevor Mudge, Quentin F. Stout, Stephen Colley, and John Palmer. A
microprocessor-based hypercube supercomputer. IEEE Micro, 6(5):6–17, October 1986.

[Ho03] R. Ho. On-chip wires: scaling and eXciency. PhD thesis, Stanford, 2003.

[Hoa71] C. A. R. Hoare. Towards a theory of parallel programming. In C. A. R. Hoare and R. H.
Perrott, editors, In Operating Systems Techniques, Proceedings of a Seminar at Queen’s
University, Belfast, Northern Ireland. Academic Press, August–September 1971. Article 5.

[Hoa73] C. A.R. Hoare. Hints on programming language design. Technical Report STAN-CS-73-
403, Stanford University, 1973.

240

Bibliography

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, 1978.

[Hoa85] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall International (UK) Ltd.,
1985.

[Hoe12] Bernd HoeYinger. Towards terabit memories. In B. HoeYinger, editor, Chips 2020,
chapter 11. Springer, 2012.

[HOF+12] R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind, D. L. SatterVeld, K. Sugavanam,
P. W. Coteus, P. Heidelberger, M. A. Blumrich, R. W. Wisniewski, A. Gara, G. L.-T. Chiu,
P. A. Boyle, N. H. Chist, and Changhoan Kim. The IBM Blue Gene/Q compute chip. IEEE
Micro, 32(2):48–60, March 2012.

[HSJ86] W. D. Hillis and G. L. Steele Jr. Data parallel algorithms. Communications of the ACM,
29(12):1170–1183, 1986.

[Hyb13] Hybrid Memory Cube Consortium. Hybrid Memory Cube SpeciVcation 1.0, 2013.

[IBP+05] S. S. Iyer, J. E. Barth, P. C. Parries, J. P. Norum, J. P. Rice, L. R. Logan, and D. Hoyniak.
Embedded DRAM: technology platform for the Blue Gene/L chip. IBM Journal of Research
and Development, 49:333–350, March 2005.

[IF99] Yehea I. Ismail and Eby G. Friedman. Repeater insertion in RLC lines for minimum
propagation delay. In Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS), volume 6, pages 404–407. IEEE, 1999.

[INM84] INMOS Ltd. Occam Programming Manual. Prentice-Hall International (UK) Ltd., 1984.

[INM88a] INMOS Ltd. Communicating Process Architecture. Prentice-Hall International (UK) Ltd.,
1988.

[INM88b] INMOS Ltd. occam 2 Reference Manual. Prentice-Hall International (UK) Ltd., 1988.

[INM88c] INMOS Ltd. Transputer Databook. INMOS Ltd., Bristol, UK, 1988. First Edition.

[Int01] International Technology Roadmap for Semiconductors. Interconnect, 2001.

[Int05] International Technology Roadmap for Semiconductors. Interconnect, 2005.

[Int07] International Technology Roadmap for Semiconductors. Interconnect, 2007.

[Int08] IntellaSys. SEAforth 40C18, scalable embedded array processor, 2008. Datasheet.

[Int10a] International Technology Roadmap for Semiconductors. Assembly and packaging, 2010.

[Int10b] International Technology Roadmap for Semiconductors. Interconnect, 2010.

[Int11] International Technology Roadmap for Semiconductors. Interconnect, 2011.

[Int12a] International Technology Roadmap for Semiconductors. Executive summary, 2012.

[Int12b] International Technology Roadmap for Semiconductors. Interconnect, 2012.

[Int12c] International Technology Roadmap for Semiconductors. System drivers, 2012.

[Int13] Intel Corporation. Intel Xeon Phi coprocessor, June 2013. Datasheet 328209-002EN.

[Ito01] Kiyoo Itoh. VLSI Memory Chip Design. Springer, 2001.

241

Bibliography

[IWM+02] Gordon M. I., Thies W., Karczmarek M., Wong J., HoUman H., Maze D. Z., and Amaras-
inghe S. A stream compiler for communication-exposed architectures. Technical Report
MIT/LCS Technical Memo LCS-TM-627, Massachusetts Institute of Technology, May
2002.

[JBK+09] Ajay Joshi, Christopher Batten, Yong-Jin Kwon, Scott Beamer, Imran Shamim, Krste
Asanovic, and Vladimir Stojanovic. Silicon-photonic Clos networks for global on-chip
communication. In Proceedings of the 2009 3rd ACM/IEEE International Symposium on
Networks-on-Chip, NOCS ’09, pages 124–133. IEEE, 2009.

[JDFJ97] A. M. Jones, N. J. Davies, M. A. Firth, and Wright C. J. The Network Designer’s Handbook.
IOS Press, 1st edition, 1997.

[JED11] JEDEC Solid State Technology Association. Wide I/O single data rate (Wide I/O SDR),
December 2011. JESD229.

[JG88] G. Jones and M. Goldsmith. Programming in occam 2. International series in computer
science. Prentice-Hall International (UK) Ltd., 1988.

[JM02] A. M. Jones and M. D. May. Microcomputer with packet translation for event packets and
memory access packets, May 2002. Patent, STMicroelectonics Ltd., number US 6,397,325
B1.

[JNW07] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM, Disk. Morgan
Kaufmann, 2007.

[Jon10] Handel H. Jones. Technical viability of stacked silicon interconnect technology. Technical
report, IBS Inc., October 2010.

[Kal12] Kalray. Kalray MPPA Manycore processors, September 2012. Product brief.

[KDTG05] J. Kim, W. J. Dally, B. Towles, and A. Gupta. Microarchitecture of a high-radix router. In
Proceedings of the 32nd Annual International Symposium on Computer Architecture (ISCA),
pages 420–431. IEEE, 2005.

[KKS+07] A Kumary, P Kunduz, AP Singhx, L-S Pehy, and NK Jhay. A 4.6 Tbits/s 3.6 GHz single-
cycle NoC router with a novel switch allocator in 65nm CMOS. In 25th International
Conference on Computer Design (ICCD), pages 63–70. IEEE, 2007.

[KLS93] C. H. Koelbel, D. B. Loveman, and R. S. Schreiber. The High Performance Fortran handbook.
MIT press, 1993.

[Knu99] Donald E. Knuth. The art of computer programming, volume 3, Sorting and searching.
Addison-Wesley, 1999.

[KOH+94] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, et al. The Stanford FLASH multiprocessor. In
Proceedings the 21st Annual International Symposium on Computer Architecture, pages
302–313. IEEE, 1994.

[KPA+06] J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis,
H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, et al. 3-D silicon integration and silicon
packaging technology using silicon through-vias. IEEE Journal of Solid-State Circuits,
41(8):1718–1725, 2006.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Prentice-Hall,
Inc., 2nd edition, 1988.

242

Bibliography

[KR90] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-memory
machines. In Jan van Leeuwen, editor, Handbook of theoretical computer science (vol. A),
pages 869–941. MIT Press, 1990.

[KRS90] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. A complexity theory of eXcient parallel
algorithms. Theoretical Computer Science, 71(1):95 – 132, 1990.

[KRSG94] LV Kalé, B. Ramkumar, AB Sinha, and A. Gursoy. The Charm parallel programming
language and system: Part I–description of language features. IEEE Transactions on
Parallel and Distributed Systems, 1994.

[KS93] R. E. Kessler and J. L. Schwarzmeier. CRAY T3D: A new dimension for Cray Research. In
Compcon, Digest of Papers., pages 176–182. IEEE, 1993.

[KU88] A. R. Karlin and E. Upfal. Parallel hashing: An eXcient implementation of shared memory.
Journal of the ACM, 35(4):876–892, 1988.

[Kun82] H. T. Kung. Why systolic architectures? IEEE Computer, 15(1):37–46, 1982.

[Kun84] S. Y. Kung. On supercomputing with systolic/wavefront array processors. Proceedings of
the IEEE, 72(7):867–884, July 1984.

[Kun88a] H. T. Kung. Computational models for parallel computers. Philosophical Transactions of the
Royal Society of London. Series A, Mathematical and Physical Sciences, 326(1591):357–371,
1988.

[Kun88b] S. Y. Kung. VLSI array processors. Prentice-Hall, Inc., 1988.

[KYAC11] Yu-Hsiang Kao, Ming Yang, N. S. Artan, and H. J. Chao. Cnoc: High-radix clos network-
on-chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
30(12):1897 –1910, December 2011.

[LAD+92] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N.
Ganmukhi, JeUrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St. Pierre,
David S. Wells, Monica C. Wong-Chan, Shaw-Wen Yang, and Robert Zak. The network
architecture of the Connection Machine CM-5. In Proceedings of the fourth annual ACM
symposium on Parallel algorithms and architectures, pages 272–285. ACM, 1992.

[LCD+08] H. W. Lean, P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell.
Characteristics of high-resolution versions of the Met OXce uniVed model for forecasting
convection over the United Kingdom. Monthly Weather Review, 136(9):3408–3424, 2008.

[Lei85] Charles E. Leiserson. Fat trees: universal networks for hardware-eXcient supercomputing.
IEEE Transactions on Computers, 34(10):892–901, October 1985.

[Lei92] Frank T. Leighton. Introduction to parallel algorithms and architectures: array, trees,
hypercubes. Morgan Kaufmann, 1992.

[LGM+09] D. Ludovici, F. Gilabert, S. Medardoni, C. Gómez, M. E. Gómez, P. López, G. N. Gaydadjiev,
and D. Bertozzi. Assessing fat-tree topologies for regular network-on-chip design under
nanoscale technology constraints. In Proceedings of the Conference on Design, Automa-
tion and Test in Europe, DATE ’09, pages 562–565. European Design and Automation
Association, 2009.

[LH89] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM
Transactions on Computer Systems, 7(4):321–359, 1989.

243

Bibliography

[LLG+92] D. Lenoski, J. Laudon, K. Gharachorloo, W. D. Weber, A. Gupta, J. Hennessy, M. Horowitz,
and M. S. Lam. The Stanford DASH multiprocessor. IEEE Computer, 25(3):63–79, 1992.

[LM89] Frank T. Leighton and Bruce Maggs. Expanders might be practical: Fast algorithms for
routing around faults on multibutterWies. In 30th Annual Symposium on the Foundations
of Computer Science, pages 384–389. IEEE, 1989.

[LMHL05] X. C. Li, J. F. Mao, H. F. Huang, and Y. Liu. Global interconnect width and spacing
optimization for latency, bandwidth and power dissipation. IEEE Transactions on Electron
Devices, 52(10):2272–2279, 2005.

[May83] D. May. OCCAM. ACM SIGPLAN Notices, 18(4):69–79, 1983.

[May88] D. May. The inWuence of VLSI technology on computer architecture. Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,
326(1591):377–393, 1988.

[May91] D. May. Compiling occam into silicon. In Developments in concurrency and communication,
pages 87–106. Addison-Wesley Longman Publishing Co., Inc., 1991.

[May94] D. May. How to design a parallel computer. In A classical mind: essays in honour of C. A.
R. Hoare, pages 275–294. Prentice Hall, 1994.

[May99] D. May. The transputer revisited. In Millennial Perspectives in Computer Science: Proceed-
ings of the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare, pages 215–246.
Palgrave Macmillan, 1999.

[May09] D. May. The XMOS XS1 Architecture. XMOS Ltd., October 2009.

[May10] D. May. Communicating process architecture for multicores. Concurrency: Practice and
Experience, 22(8):935–948, 2010.

[May11] D. May. XMOS Architecture: XS1 chips. IEEE Micro, 32:28–37, August 2011.

[MC80] Carver Mead and Lynn Conway. Introduction to VLSI systems. Addison-Wesley series in
computer science. Addison-Wesley, 1980.

[McC93] W. F. McColl. General purpose parallel computing. Lectures on parallel computation,
4:337–391, 1993.

[McC94] W. F. McColl. BSP programming. In Proceedings of the DIMACS Workshop, volume 18,
pages 21–35, 1994.

[MD94] T. Mackenzie and T. Dix. A distributed memory multiprocessor implementation of C-
with-Ease. In International Conference on Parallel and Distributed Systems, pages 250 –257,
December 1994.

[Mei88] Meiko Ltd. The Meiko computing surface: an example of a massively parallel system. In
Proceedings of the third conference on Hypercube concurrent computers and applications:
Architecture, software, computer systems, and general issues, volume 1 of C3P, pages
852–859. ACM, 1988.

[Mes09] Message Passing Interface Forum. MPI: A message-passing interface standard, September
2009.

[MFLA99] C. A. Moritz, M. Frank, W. Lee, and S. Amarasinghe. Hot pages: Software caching for
RAW microprocessors. Technical Report LCS-TM-599, MIT,Cambridge, MA, August 1999.

244

Bibliography

[Mic12a] Micron. 1Gb: x4, x8, x16 DDR3 SDRAM: MT41J128M8JP-125 features, 2012. Datasheet.

[Mic12b] Micron. 512Mb: x4, x8, x16 DDR SDRAM: MT46V128M4BN-5B features, 2012. Datasheet.

[Mic12c] Micron. 512Mb: x4, x8, x16 DDR2 SDRAM: MT47H128M4CF-25E features, 2012.
Datasheet.

[Mic12d] Micron. 512Mb: x4, x8, x16 SDR SDRAM: MT48LC128M4A2P-75 features, 2012. Datasheet.

[Mil82] Robin Milner. A calculus of communicating systems. Springer-Verlag, 1982.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University
Press, June 1999.

[Mil10] David A. B. Miller. Optical interconnects to electronic chips. Applied optics, 49(25):F59–
F70, September 2010.

[Mis86] J. Misra. Distributed discrete-event simulation. ACM Computing Surveys, 18(1):39–65,
1986.

[Mit91] M. D. Mitzenmacher. The power of two choices in randomized load balancing. PhD thesis,
Harvard University, 1991.

[Moo65] G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114–
117, April 1965.

[MPJ+00] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart Memories: a
modular reconVgurable architecture. SIGARCH Computer Architecture News, 28(2):161–
171, 2000.

[MS87] D. McBurney and M. R. Sleep. Transputer-based experiments with the ZAPP architecture.
In Parallel Architectures and Languages Europe (PARLE), pages 242–259. Springer, 1987.

[MS88] D. McBurney and M. R. Sleep. Transputers + virtual tree kernel = real speedups. In
Proceedings of the third conference on Hypercube concurrent computers and applications:
Architecture, software, computer systems, and general issues, volume 1, pages 128–137.
ACM, 1988.

[MSA+83] J. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J. Glauert, I. Dobes, and
P. Hohensee. SISAL: streams and iteration in a single-assignment language. Technical
report, Lawrence Livermore National Laboratory, CA (USA), 1983. Language reference
manual, Version 1.1.

[MSM04] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for parallel program-
ming. Addison-Wesley Professional, 2004.

[MTW93] D. May, P. W. Thompson, and P. H. Welch, editors. Networks, Routers and Transputers:
Function, Performance and Applications. IOS Press, 1st edition, 1993.

[MTWS78] D. May, R. J.B. Taylor, and C. Whitby-Strevens. EPL: An experimental language for
distributed computing. In Proceedings of Trends and Applications: Distributed Processing,
Natlonal Bureau of Standards, pages 69–71, May 1978.

[MWM04] R. Mullins, A. West, and S. Moore. Low-latency virtual-channel routers for on-chip
networks. In ACM SIGARCH Computer Architecture News, volume 32, page 188. IEEE,
2004.

245

Bibliography

[Myc07] A. Mycroft. Programming language design and analysis motivated by hardware evolution
(invited presentation). In Proceedings of SAS’07, volume 3634, pages 18–33. Springer-
Verlag, August 2007.

[NBB+63] P. Naur, J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. Mc-Carthy, A. J Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, et al. Revised report on the algorithmic language Algol 60.
Communications of the ACM, 6(1):1–17, 1963.

[NHL94] J. Nieplocha, R. J. Harrison, and R. J. LittleVeld. Global arrays: A portable shared-memory
programming model for distributed memory computers. In Proceedings of the ACM/IEEE
conference on Supercomputing, pages 340–349. ACM, 1994.

[NR98] Robert W. Numrich and John Reid. Co-array Fortran for parallel programming. SIGPLAN
Fortran Forum, 17(2):1–31, August 1998.

[NVI12] NVIDIA Corporation. NVIDIA K-Series Tesla GPU accelerators, 2012. Datasheet.

[NWD93] M. D. Noakes, D. A. Wallach, and W. J. Dally. The J-machine multicomputer: an archi-
tectural evaluation. In ACM SIGARCH Computer Architecture News, volume 21, pages
224–235. ACM, 1993.

[OIDK95] S. R. Ohring, M. Ibel, S. K. Das, and M. J. Kumar. On generalized fat trees. In Proceedings
of the 9th International Parallel Processing Symposium, pages 37–44, April 1995.

[OW10] R. Osborne and D. Watt. Tools Developer Guide. XMOS Ltd., Bristol, UK, May 2010.

[PAC+97] D. A. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,
and K. Yelick. A case for intelligent RAM. IEEE Micro, 17(2):34–44, 1997.

[Pat04] D. A. Patterson. Latency lags bandwith. Communications of the ACM, 47:71–75, October
2004.

[Pel94] F. J. Pelletier. The principle of semantic compositionality. Topoi, 13(1):11–24, 1994.

[Pet77] J. L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223–252, September 1977.

[Pfe07] Charles Pfeil. BGA breakout challenges. OnBoard Technology, pages 10–13, October 2007.

[PFH+02] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics network:
High-performance clustering technology. IEEE Micro, 22(1):46–57, 2002.

[PJ89] S. L. Peyton Jones. Parallel implementations of functional programming languages. The
Computer Journal, 32(2):175–186, 1989.

[PJCSH87] S. L. Peyton Jones, C. Clack, J. Salkild, and M. Hardie. GRIP—a high-performance
architecture for parallel graph reduction. In Gilles Kahn, editor, Functional Programming
Languages and Computer Architecture, volume 274 of Lecture Notes in Computer Science,
pages 98–112. Springer, 1987.

[Pol99] Fred J. Pollack. New microarchitecture challenges in the coming generations of CMOS
process technologies. In Proceedings of the 32nd annual ACM/IEEE international symposium
on Microarchitecture, MICRO 32. IEEE, 1999.

[PTD+06] Gajinder Panesar, Daniel Towner, Andrew Duller, Alan Gray, and Will Robbins. Deter-
ministic parallel processing. International Journal of Parallel Programming, 34(4):323–341,
August 2006.

246

Bibliography

[PV81] Franco P. Preparata and Jean Vuillemin. The cube-connected cycles: a versatile network
for parallel computation. Communications of the ACM, 24(5):300–309, May 1981.

[PV97] F. Petrini and M. Vanneschi. k-ary n-trees: High performance networks for massively par-
allel architectures. In Proceedings of the 11th International Parallel Processing Symposium,
pages 87–93. IEEE, 1997.

[PvE93] Rinus Plasmeijer and Marko van Eekelen. Functional programming and parallel graph
rewriting. Addison-Wesley, 1993.

[Ram11] Suresh Ramalingam. Stacked silicon interconnect technology (SSIT) qualiVcation –
requirements and tools, July 2011. Presentation given at the 3D Stress Workshop.

[Ran87] Abhiram G. Ranade. How to emulate shared memory. In Proceedings of the 28th annual
IEEE symposium on Foundations of Computer Science, pages 185–194, 1987.

[RCBJ11] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle Accurate Memory
System Simulator. Computer Architecture Letters, 10(1):16–19, January 2011.

[RH88] A. W. Roscoe and C. A. R. Hoare. The laws of occam programming. Theoretical Computer
Science, 60(2):177–229, 1988.

[Ric67] Martin Richards. The BCPL reference manual. Technical report, Project MAC, Mas-
sachusetts Institute of Technology, July 1967. Memorandum M-352.

[RKB+09] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang, and Yan Solihin.
Scaling the bandwidth wall: challenges in and avenues for CMP scaling. In Proceedings
of the 36th annual international symposium on Computer architecture, ISCA ’09, pages
371–382. ACM, 2009.

[RS90] Sanjay Ranka and Sartaj Sahni. Hypercube algorithms for image processing and pattern
recognition. Springer-Verlag, 1990.

[RSSK94] B. Ramkumar, AB Sinha, VA Saletore, and LV Kale. The Charm parallel programming
language and system: Part II–the runtime system. IEEE Transactions on Parallel and
Distributed Systems, 1994.

[Rus78] R. M. Russell. The CRAY-1 computer system. Communications of the ACM, 21(1):63–72,
1978.

[RWS79] Martin Richards and Colin Whitby-Strevens. BCPL - the language and its compiler.
Cambridge University Press, 1979.

[Sab11] Kirk Saban. Xilinx stacked silicon interconnect technology delivers breakthrough FPGA
capacity, bandwidth, and power eXciency. Technical report, Xilinx Inc., October 2011.

[SAKD06] S. Scott, D. Abts, J. Kim, and W. J. Dally. The BlackWidow high-radix Clos network. In
Proceedings of the 33rd annual international symposium on Computer Architecture, ISCA
’06, pages 16–28. IEEE, 2006.

[Sch80] J. T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and
Systems, 2(4):484–521, October 1980.

[Sch98] Christian Scheideler. Universal routing strategies for interconnection networks, volume
1390. Springer-Verlag, 1998.

247

Bibliography

[SDB93] A. Skjellum, N. E. Doss, and P. V. Bangalore. Writing libraries in MPI. In Proceedings of
the Scalable Parallel Libraries Conference, pages 166–173, October 1993.

[SDM+12a] S. Satpathy, R. Dreslinski, T. Manville, D. Sylvester, T. Mudge, and D. Blaauw. A 4.5Tb/s
3.4Tb/s/W 64x64 switch fabric with self-updating least recently granted priority and
quality of service arbitration in 45nm CMOS. In Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2010 IEEE International, IEEE International Solid-State Circuits
Conference (ISSCC), San Francisco, CA, pages 478–479, February 2012.

[SDM+12b] K. Sewell, R. G. Dreslinski, T. Manville, S. Satpathy, N. Pinckney, G. Blake, M. Cieslak,
R. Das, T. F. Wenisch, D. Sylvester, et al. Swizzle-Switch networks for many-core systems.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(2):278–294, 2012.

[SDTO+11] S. Satpathy, R. Dreslinski, D. Sylvester T. Ou, T. Mudge, and D. Blaauw. SWIFT: A 2.1tb/s
32x32 self-arbitrating manycore interconnect fabric. In Symposia on VLSI Technology and
Circuits, Koyoto, Japan, pages 138–139, June 2011.

[Sei85] C. L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1):22–33, 1985.

[SGS95] SGS-Thompson Microelectronics Ltd., Bristol, UK. occam 2.1 reference manual, May 1995.

[Sto71] H. S. Stone. Parallel processing with the perfect shuYe. IEEE Transactions on Computers,
20(2):153–161, Feburary 1971.

[TCM+09] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge, M. J. Meeuwsen,
C. Watnik, A. T. Tran, Z. Xiao, et al. A 167-processor computational platform in 65nm
CMOS. IEEE Journal of Solid-State Circuits, 44(4):1130–1144, 2009.

[Tez10] Tezzaron Semiconductor. Octopus 8-port DRAM for die-stack applications, 2010.
Datasheet.

[THLPJ98] P. W. Trinder, K. Hammond, H. W. Loidl, and S. L. Peyton Jones. Algorithm + strategy =
parallelism. Journal of functional programming, 8(1):23–60, 1998.

[TKA02] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for streaming
applications. In Compiler Construction, pages 49–84. Springer, 2002.

[TMHAJ08] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P. Jouppi.
CACTI 5.1. Technical report, HP Laboratories, 2008.

[TR88] L. W. Tucker and G. G. Robertson. Architecture and applications of the Connection
Machine. IEEE Computer, 21(8):26–38, 1988.

[Tur37] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, s2-42(1):230–265, January 1937.

[Tur46] A. M. Turing. Proposals for development in the mathematics division of an automatic
computing engine (ACE). Technical Report Report E882, Executive Committee, National
Physical Laboratory (NPL) in Teddington, England, Feburary 1946. Reprinted April 1972
as NPL Report Com. Sci 57.

[Ull84] J. D. Ullman. Computational Aspects of VLSI. W. H. Freeman & Co., 1984.

[Upf84] E. Upfal. EXcient schemes for parallel communication. Journal of the ACM, 31(3):507–517,
June 1984.

248

Bibliography

[Upf92] E. Upfal. An O(log N) deterministic packet-routing scheme. Journal of the ACM, 39(1):55–
70, 1992.

[Val82] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal on Computing,
11(2):350–361, 1982.

[Val88] L. G. Valiant. Optimally universal parallel computers. In ScientiVc applications of multi-
processors, pages 17–20. Prentice Hall, 1988.

[Val90a] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

[Val90b] L. G. Valiant. General purpose parallel architectures. In Handbook of theoretical computer
science (vol. A): algorithms and complexity, pages 943–973. MIT Press, 1990.

[VB81] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In
Proceedings of the thirteenth annual ACM symposium on Theory of computing, STOC ’81,
pages 263–277. ACM, 1981.

[VLT87] J. Van Leeuwen and R. B. Tan. Interval routing. The Computer Journal, 30(4):298–307,
1987.

[von45] J. von Neumann. First draft of a report on the EDVAC. Technical Report Contract
No. W-670-ORD-4926, Moore School of Electical Engineering, University of Pennsylvania,
June 1945. Reprinted in Annals of the History of Computing, IEEE, 15(4), 1993, pages 27-75.

[Wat09] Douglas Watt. Programming XC on XMOS Devices. XMOS Ltd., September 2009.

[WB05] P. H. Welch and F. R.M. Barnes. Communicating mobile processes: introducing occam-pi.
In A. E. Abdallah, C. B. Jones, and J. W. Sanders, editors, 25 Years of CSP, Lecture Notes in
Computer Science, pages 175–210. Springer-Verlag, April 2005.

[WD96] David W. Walker and Jack J. Dongarra. MPI: A standard message passing interface.
Supercomputer, 12:56–68, 1996.

[Wei84] Reinhold P Weicker. Dhrystone: a synthetic systems programming benchmark. Commu-
nications of the ACM, 27(10):1013–1030, 1984.

[Wel92] P. H. Welch. The role and future of occam. In Transputer Applications – Progress
and Prospects (Proceedings of the Closing Symposium of the SERC/DTI Initiative in the
Engineering Applications of Transputers), pub. IOS Press, Amsterdam (ISBN 90-5199-079-0),
pages 152–169, 1992.

[WGH+07] D. WentzlaU, P. GriXn, H. HoUmann, Liewei Bao, B. Edwards, C. Ramey, M. Mattina,
Chyi-Chang Miao, J. F. Brown, and A. Agarwal. On-chip interconnection architecture of
the Tile processor. IEEE Micro, 27(5):15–31, September 2007.

[WH88] D. H. D. Warren and S. Haridi. Data diUusion machine – a scalable shared virtual memory
multiprocessor. In Proceedings of the 1988 International Conference on Fifth Generation
Computer Systems, pages 943–952, 1988.

[Whe50] D. J. Wheeler. Programme organization and initial orders for the EDSAC. Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071):573–
589, 1950.

[Wil68] M. V. Wilkes. Computers then and now. Journal of the ACM, 15(1):1–7, 1968.

249

Bibliography

[Wir71] Niklaus Wirth. The programming language Pascal. Acta informatica, 1(1):35–63, 1971.

[WJNB95] Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles. Dynamic storage
allocation: A survey and critical review. In Memory Management, pages 1–116. Springer,
1995.

[WM05] Neil H. E. Weste and David Money. CMOS VLSI Design. Pearson/Addison-Wesley, fourth
edition, 2005.

[WP94] P. G. Whiting and R. S.V. Pascoe. A history of data-Wow languages. IEEE Annals of the
History of Computing, 16(4):38–59, 1994.

[WRRF05] M. Woodacre, D. Robb, D. Roe, and K. Feind. The SGI AltixTM 3000 global shared-memory
architecture, 2005. Silicon Graphics International.

[WTS+97] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch,
R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring it all to software: RAW
machines. IEEE Computer, 30(9):86–93, September 1997.

[XMO10] XMOS Ltd., Bristol, UK. XK-XMP-64 Hardware Manual, Feburary 2010.

[XMO12a] XMOS Ltd., Bristol, UK. XS1-G System SpeciVcation, March 2012.

[XMO12b] XMOS Ltd., Bristol, UK. XS1-G04B-FB512 Datasheet, October 2012.

[YKM+11] Marcelo YuUe, Ernest Knoll, Moty Mehalel, Joseph Shor, and Tsvika Kurts. A fully
integrated multi-CPU, GPU and memory controller 32nm processor. In Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, pages 264–266.
IEEE, 2011.

[YMA+08] Z. Yu, M. J. Meeuwsen, R. W. Apperson, O. Sattari, M. Lai, J. W. Webb, E. W. Work,
D. Truong, T. Mohsenin, and B. M. Baas. AsAP: An asynchronous array of simple
processors. IEEE Journal of Solid-State Circuits, 43(3):695–705, March 2008.

[Yor02] Richard York. Benchmarking in context: Dhrystone. White Paper, ARM Ltd., Cambridge,
UK, 2002.

[YSP+98] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. HilVn-
ger, S. Graham, D. Gay, P. Colella, et al. Titanium: A high-performance Java dialect.
Concurrency: Practice and Experience, 10(11-13):825–836, 1998.

[Yua11] Xin Yuan. On nonblocking folded-Clos networks in computer communication environ-
ments. In IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
188–196, May 2011.

[Zen90] S. E. Zenith. Linda coordination language: Subsystem kernel architecture (on transputers).
Technical Report Research Report YALEU/DSC/RR-794, Yale University, May 1990.

[Zen92a] S. E. Zenith. Ease: the model and its implementation. In Proceeding of a Workshop on
Languages, Compilers and Run-Time Environments for Distributed Memory Multiprocessors,
September 1992. Appeared as SIGPLAN Not. 28, 1 (Jan.), 1993, 87.

[Zen92b] Steven E. Zenith. A rationale for programming with Ease. Reasearch Directions in
High-Level Parallel Programming Languages, pages 147–156, 1992.

[ZGY10] Jing Zhang, Huaxi Gu, and Yintang Yang. A high performance optical network on
chip based on Clos topology. In 2nd International Conference on Future Computer and
Communication (ICFCC), volume 2, pages V2–63 –V2–68, May 2010.

250

APPENDICES

251

APPENDIX A.

SIRE SYNTAX

A.1. Collected syntax

The following sections list the sire syntax, with each section collecting related to a particular feature,
similar to the presentation in Chapter 6.

A.1.1. Program

program = 〈program-speciVcation〉 : 〈program〉
| 〈sequence〉

program-speciVcation = 〈speciVcation〉
| 〈deVnition〉

deVnition = 〈simultaneous-deVnition〉
simultaneous-deVnition = {0 & 〈deVnition〉 }

A.1.2. Specifications

speciVcation = 〈declaration〉
| 〈abbreviation〉

Declarations

declaration = 〈type〉 {1 , 〈name〉 }
type = 〈primitive-type〉

| 〈array-type〉
primitive-type = var

array-type = 〈primitive-type〉
| 〈array-type〉 [〈expression〉]

Abbreviations

abbreviation = 〈speciVer〉 〈name〉 is 〈element〉
| val 〈name〉 is 〈expression〉

speciVer = 〈primitive-type〉
| 〈speciVer〉 []
| 〈speciVer〉 [〈expression〉]

A.1.3. Sequence

sequence = {0 ; 〈command〉 }
command = 〈primitive-command〉

| 〈structured-command〉

253

Appendix A. Sire syntax

| 〈speciVcation〉 : 〈command〉

Primitive commands

primitive-command = 〈skip〉
| 〈stop〉
| 〈assingment〉
| 〈input〉
| 〈output〉
| 〈connect〉

skip = skip

stop = stop

assignment = 〈variable〉 := 〈expression〉
input = 〈chanend〉 ? 〈variable〉
output = 〈chanend〉 ! 〈expression〉
connect = connect 〈chanend〉 to 〈chanend〉

Structured commands

structured-command = 〈alternation〉
| 〈conditional〉
| 〈loop〉
| { 〈sequence〉 }
| { 〈parallel〉 }

conditional = if { {0 | 〈choice〉 }
| if 〈expression〉 then 〈command〉 else 〈command〉

choice = 〈guarded-choice〉
| 〈conditional〉
| 〈speciVcation〉 : 〈choice〉

guarded-choice = 〈expression〉 : 〈command〉
alternation = alt { {0 | 〈alternative〉 } }
alternative = 〈guarded-alternative〉

| 〈alternation〉
| 〈speciVcation〉 : 〈alternative〉

guarded-alternative = 〈guard〉 : 〈command〉
guard = 〈input〉

| 〈expression〉 & 〈input〉
| 〈expression〉 & 〈skip〉

loop = while 〈expression〉 do 〈command〉
parallel = {0 & 〈parallel-component〉 }

parallel-component = 〈process-label〉 〈process〉
| 〈process〉

process-label = 〈name〉 is

254

A.1. Collected syntax

A.1.4. Process

process = 〈interface〉 : 〈command〉
| 〈command〉

interface = interface ({0 , 〈declaration〉 })
primitive-type = 〈chanend-type〉
chanend-type = chanend

A.1.5. Server

Specification

server = 〈interface〉 : 〈server-speciVcation〉
primitive-type = 〈call-type〉

call-type = call

declaration = 〈type〉 {1 , 〈name〉 ({0 , 〈formal〉 }) }
server-speciVcation = 〈declaration〉

| { {1 : 〈declaration〉 } }
declaration = initial 〈command〉

| final 〈command〉
| 〈alternation〉

guard = accept 〈name〉 ({0 , 〈formal〉 })
| 〈expression〉 & accept 〈name〉 ({0 , 〈formal〉 })

Declarations

declaration = 〈server-declaration〉
| 〈hiding-declaration〉
| 〈simultaneous-declaration〉

server-declaration = 〈name〉 is 〈server〉
server = 〈server-array〉

server-array = [{1 , 〈server〉 }]
hiding-declaration = from { {1 : 〈declaration〉 } } interface 〈name〉

simultaneous-declaration = {0 & 〈declaration〉 }

Call

command = 〈server-call〉
server-call = 〈element〉 ({0 , 〈actual〉 })

A.1.6. Replication

command = seq 〈replicator〉 〈command〉
process = par 〈replicator〉 〈process〉

conditional = if 〈replicator〉 〈choice〉
alternation = alt 〈replicator〉 〈alternative〉

server-declaration = 〈name〉 is 〈replicator〉 〈server〉

255

Appendix A. Sire syntax

| 〈name〉 is [〈expression〉] 〈server〉
declaration = alt 〈replicator〉 〈alternative〉
replicator = [{1 , 〈index-range〉 }]

index-range = 〈name〉 = 〈expression〉 for 〈expression〉
| 〈name〉 = 〈expression〉 for 〈expression〉 step 〈expression〉

A.1.7. Expressions

expression = 〈unary-operator〉 〈operand〉
| 〈operand〉 〈binary-operator〉 〈operand〉
| 〈operand〉

operand = 〈element〉
| 〈literal〉
| (〈expression〉)

Valof

valof = valof 〈process〉 result 〈expression〉
| 〈speciVcation〉 : 〈valof〉

expression = (〈valof〉)

A.1.8. Elements

chanend = 〈element〉
element = 〈element〉 [〈expression〉]

| 〈Veld〉
| 〈name〉

Veld = 〈element〉 . 〈name〉
variable = 〈element〉
literal = 〈decimal-integer〉

| # 〈hexdecimal-integer〉
| 〈byte〉
| true
| false

hexdecimal-integer = 〈hexdecimal-digit〉
| 〈hexdecimal-digit〉 〈hexdecimal-integer〉

decimal-integer = 〈digit〉
| 〈digit〉 〈decimal-integer〉

byte = ’ 〈character〉 ’

A.1.9. Abstraction

Definitions

deVnition = 〈procedure〉
| 〈function〉

256

A.1. Collected syntax

procedure = process 〈name〉 ({0 , 〈formal〉 }) is 〈process〉
| server 〈name〉 ({0 , 〈formal〉 }) is 〈server〉
| server 〈name〉 ({0 , 〈formal〉 }) inherits 〈hiding-declaration〉

function = function 〈name〉 ({0 , 〈formal〉 }) is 〈valof〉
formal = 〈speciVer〉 {1 , 〈name〉 }

| 〈call-type〉 {1 , 〈name〉 ({0 , 〈formal〉 }) }
| val {1 , 〈name〉 }

abbreviation = 〈speciVer〉 〈name〉 ({0 , 〈formal〉 }) is
| 〈call-type〉 〈name〉 ({0 , 〈formal〉 }) is 〈name〉

primitive-type = 〈process-type〉
| 〈server-type〉

process-type = process 〈name〉
| process 〈interface〉

server-type = server 〈name〉
| server 〈interface〉

call-type = process

| function

Instances

process = 〈instance〉
server = 〈instance〉

command = 〈instance〉
expression = 〈instance〉
instance = 〈name〉 ({0 , 〈actual〉 })
actual = 〈element〉

| 〈expression〉

A.1.10. Compiler transformations

Process distribution

process = on 〈expression〉 do 〈process〉

Channel end references

absolute-reference = (〈expression〉 : 〈expression〉 : 〈expression〉)
interface = interface ({0 , 〈declaration〉 }) @ 〈absolute-reference〉

server-call = 〈local-chanend〉 ! 〈element〉 ({0 , 〈actual〉 })
local-chanend = 〈element〉 @ 〈absolute-reference〉

chanend = 〈remote-chanend〉
remote-chanend = @ 〈absolute-reference〉 . 〈expression〉

257

Appendix A. Sire syntax

A.2. Ordered syntax

The following lists each element of the sire syntax in alphabetical order.

abbreviation = val 〈name〉 is 〈expression〉
| 〈call-type〉 〈name〉 ({0 , 〈formal〉 }) is 〈name〉
| 〈speciVer〉 〈name〉 ({0 , 〈formal〉 }) is
| 〈speciVer〉 〈name〉 is 〈element〉

absolute-reference = (〈expression〉 : 〈expression〉 : 〈expression〉)

actual = 〈element〉
| 〈expression〉

alternation = alt { {0 | 〈alternative〉 } }
| alt 〈replicator〉 〈alternative〉

alternative = 〈alternation〉
| 〈guarded-alternative〉
| 〈speciVcation〉 : 〈alternative〉

array-type = 〈array-type〉 [〈expression〉]
| 〈primitive-type〉

assignment = 〈variable〉 := 〈expression〉

byte = ’ 〈character〉 ’

call-type = call

| function
| process

chanend = 〈element〉
| 〈remote-chanend〉

chanend-type = chanend

choice = 〈conditional〉
| 〈guarded-choice〉
| 〈speciVcation〉 : 〈choice〉

command = seq 〈replicator〉 〈command〉
| 〈instance〉
| 〈primitive-command〉
| 〈server-call〉
| 〈speciVcation〉 : 〈command〉
| 〈structured-command〉

conditional = if { {0 | 〈choice〉 }

258

A.2. Ordered syntax

| if 〈expression〉 then 〈command〉 else 〈command〉
| if 〈replicator〉 〈choice〉

connect = connect 〈chanend〉 to 〈chanend〉

decimal-integer = 〈digit〉
| 〈digit〉 〈decimal-integer〉

declaration = alt 〈replicator〉 〈alternative〉
| final 〈command〉
| initial 〈command〉
| 〈alternation〉
| 〈hiding-declaration〉
| 〈server-declaration〉
| 〈simultaneous-declaration〉
| 〈type〉 {1 , 〈name〉 ({0 , 〈formal〉 }) }
| 〈type〉 {1 , 〈name〉 }

deVnition = 〈function〉
| 〈procedure〉
| 〈simultaneous-deVnition〉

element = 〈element〉 [〈expression〉]
| 〈Veld〉
| 〈name〉

expression = (〈valof〉)
| 〈instance〉
| 〈operand〉
| 〈operand〉 〈binary-operator〉 〈operand〉
| 〈unary-operator〉 〈operand〉

Veld = 〈element〉 . 〈name〉

formal = val {1 , 〈name〉 }
| 〈call-type〉 {1 , 〈name〉 ({0 , 〈formal〉 }) }
| 〈speciVer〉 {1 , 〈name〉 }

function = function 〈name〉 ({0 , 〈formal〉 }) is 〈valof〉

guard = accept 〈name〉 ({0 , 〈formal〉 })
| 〈expression〉 & accept 〈name〉 ({0 , 〈formal〉 })
| 〈expression〉 & 〈input〉
| 〈expression〉 & 〈skip〉
| 〈input〉

guarded-alternative = 〈guard〉 : 〈command〉

259

Appendix A. Sire syntax

guarded-choice = 〈expression〉 : 〈command〉

hexdecimal-integer = 〈hexdecimal-digit〉
| 〈hexdecimal-digit〉 〈hexdecimal-integer〉

hiding-declaration = from { {1 : 〈declaration〉 } } interface 〈name〉

index-range = 〈name〉 = 〈expression〉 for 〈expression〉
| 〈name〉 = 〈expression〉 for 〈expression〉 step 〈expression〉

input = 〈chanend〉 ? 〈variable〉

instance = 〈name〉 ({0 , 〈actual〉 })

interface = interface ({0 , 〈declaration〉 })
| interface ({0 , 〈declaration〉 }) @ 〈absolute-reference〉

literal = # 〈hexdecimal-integer〉
| false
| true
| 〈byte〉
| 〈decimal-integer〉

local-chanend = 〈element〉 @ 〈absolute-reference〉

loop = while 〈expression〉 do 〈command〉

operand = (〈expression〉)
| 〈element〉
| 〈literal〉

output = 〈chanend〉 ! 〈expression〉

parallel = {0 & 〈parallel-component〉 }

parallel-component = 〈process-label〉 〈process〉
| 〈process〉

primitive-command = 〈assingment〉
| 〈connect〉
| 〈input〉
| 〈output〉
| 〈skip〉
| 〈stop〉

primitive-type = var

| 〈call-type〉
| 〈chanend-type〉
| 〈process-type〉

260

A.2. Ordered syntax

| 〈server-type〉

procedure = process 〈name〉 ({0 , 〈formal〉 }) is 〈process〉
| server 〈name〉 ({0 , 〈formal〉 }) inherits 〈hiding-declaration〉
| server 〈name〉 ({0 , 〈formal〉 }) is 〈server〉

process = on 〈expression〉 do 〈process〉
| par 〈replicator〉 〈process〉
| 〈command〉
| 〈instance〉
| 〈interface〉 : 〈command〉

process-label = 〈name〉 is

process-type = process 〈interface〉
| process 〈name〉

program = 〈program-speciVcation〉 : 〈program〉
| 〈sequence〉

program-speciVcation = 〈deVnition〉
| 〈speciVcation〉

remote-chanend = @ 〈absolute-reference〉 . 〈expression〉

replicator = [{1 , 〈index-range〉 }]

sequence = {0 ; 〈command〉 }

server = 〈instance〉
| 〈interface〉 : 〈server-speciVcation〉
| 〈server-array〉

server-array = [{1 , 〈server〉 }]

server-call = 〈element〉 ({0 , 〈actual〉 })
| 〈local-chanend〉 ! 〈element〉 ({0 , 〈actual〉 })

server-declaration = 〈name〉 is [〈expression〉] 〈server〉
| 〈name〉 is 〈replicator〉 〈server〉
| 〈name〉 is 〈server〉

server-speciVcation = { {1 : 〈declaration〉 } }
| 〈declaration〉

server-type = server 〈interface〉
| server 〈name〉

simultaneous-declaration = {0 & 〈declaration〉 }

261

Appendix A. Sire syntax

simultaneous-deVnition = {0 & 〈deVnition〉 }

skip = skip

speciVcation = 〈abbreviation〉
| 〈declaration〉

speciVer = 〈primitive-type〉
| 〈speciVer〉 []
| 〈speciVer〉 [〈expression〉]

stop = stop

structured-command = { 〈parallel〉 }
| { 〈sequence〉 }
| 〈alternation〉
| 〈conditional〉
| 〈loop〉

type = 〈array-type〉
| 〈primitive-type〉

valof = valof 〈process〉 result 〈expression〉
| 〈speciVcation〉 : 〈valof〉

variable = 〈element〉

262

A.3. Operators

A.3. Operators

A 〈binary-operator〉 ⊕ takes two operands a and b and produces a value a⊕ b. A binary arithmetic
operators takes signed integer operands and produces a signed integer result.

Symbol Meaning DeVnition

+ sum a+ b
- diUerence a− b
* produce a× b
/ quotient a/b
rem remainder a mod b

A binary relational operator takes two signed integer values and produces the value true or false.

Symbol Meaning DeVnition

= equality a = b
~= inequality a 6= b
< less than a < b
<= less than or equal a ≤ b
> greater than a > b
>= greater than or equal a ≥ b

A binary logical operator takes two operands and produces a bitwise result bi = ai ⊕ bi for 0 ≤ i < n.

Symbol Meaning DeVnition

or bitwise or b or 0 = b, b or 1 = 1
and bitwise and b and 0 = 0, b and 1 = b
xor bitwise exclusive or b xor 0 = b, b xor 1 = 1, 1 xor 1 = 0,
<< left bitwise shift bi = bi+1, b0 = 0
>> right bitwise shift bi = bi−1, bn − 1 = 0

A 〈unary-operator〉 ⊕ takes a single operand a and produces the value ⊕a.

Symbol Meaning DeVnition

- negation 0− a
~ bitwise not ~0 = 1, ~1 = 0

A.4. Representation of values

Signed values are represented as a two’s complement bit-pattern. With a word size of n, values in the
range −2n−1 ≤ n < 2n−1 can be represented.
The literal value true represents an all-1 bit pattern (the value −1) and the literal value false

represents an all-0 bit pattern (the value 0). The eUect of this is consistent with the logical not
operation: not false = true and not true = false.

A.5. Character set

A 〈character〉 can be any alphabetical character

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

263

Appendix A. Sire syntax

or any special character

_ + - = , . : ; ? { } [] () # & ! * @ | " ’

A 〈digit〉 can be any numeric character

0 1 2 3 4 5 6 7 8 9

A 〈hex-digit〉 can be any numeric character or

A B C D E F a b c d e f

A 〈name〉 consists of a sequence of alphanumeric characters and underscores.

A.6. Comments

A comment is introduced with a ‘%’ symbol and continues until the end of the line.

A.7. Keywords

The following are keywords in sire and cannot be used for names.

accept

alt

call

chanend

connect

do

else

false

final

for

from

function

if

inherits

initial

interface

is

on

par

process

result

seq

server

skip

step

stop

then

to

true

val

valof

var

while

264

APPENDIX B.

AN OVERVIEW OF THE XS1 ARCHITECTURE

This appendix gives a brief overview of the XS1 architecture as a basis for the description of the
run-time functionality and code generation given in Chapter 8. It presents a simpliVed subset
of the instruction set, omitting details irrelevant to this work; for full details please refer to its
deVnition [May09].

B.1. Overview

A system consists of a collection of processor-memory tiles connected by a network (see Figure 8.3).
A processor has access to a memory, mem, and contains a number of physical resources:

• A set of threads, each with its own set of registers:

– r0 to r11, general purpose registers;
– pc, the program counter;
– sp, the stack pointer;
– dp, the data pointer;
– cp, the constant pool;
– lr, the link register;
– sr, the status register;
– ed, the event data register.

All threads have symmetric access to the tile memory.

• A set of channel ends for communication, where each channel end represents the resources
associated with the physical end point of a communication channel, including:

– d, a destination channel end register that speciVes where messages are sent;
– e, an event vector register;
– ev, an environment vector register;

where e and ev are used to service events and interrupts.

• A set of locks to perform mutual exclusion.

• A scheduler that dynamically selects which thread to execute. Threads are not runnable when
they are waiting either to synchronise with another thread, to input on a channel, to output on
a channel because there is no room to buUer the data, or for an event.

B.1.1. Simplifications

The following simpliVcations are used in the presentation of the instruction subset.

1. Variants. Some instructions represent a number of variants of the same operations, such as
forward and backward references and memory accesses using the constant pool, data pool or
stack pointer as a base. These are all marked with an asterisk.

2. Exceptions. Unexpected instructions, invalid system state, invalid use of resources or invalid
memory accesses will all cause the processor enters an exception state. However, the details of
this and the exception types are not presented since exception handling is not discussed.

265

Appendix B. An overview of the XS1 architecture

B.1.2. Notation

The following notation is used:

• ‘x[i]’ denotes a memory address at byte address x with word oUset i;

• ‘x← y’ denotes the value y being written to the storage location x, which could be a register
or memory location;

• ‘P ;Q’ denotes a sequence in which P is performed and then Q;

• ‘Bpw’ is the number of bytes per word;

• ‘bpw’ is the number of bits per word.

B.2. Memory access

The memory is accessed with a base and an oUset.

LDAW* d, b, i d← b+ i× Bpw load the word address at base b with word oUset i
LDW* d, b, i d← mem[b+ i× Bpw] load word at address b with word oUset i into d
STW* s, b, i mem[b+ i× Bpw]← s store s address b with word oUset i

B.3. Branching and procedure calls

The following instructions support branches and procedures.

B s pc← s branch to address s
BL* s lr← pc;

pc← s
link then branch to s

BLT* s, u lr← pc;
pc← s[u]

link then branch via table

ENTSP n sp[0]← lr;
sp← sp-n× Bpw

save lr then extend the stack by n words

EXTSP n sp← sp+n× Bpw extend the stack by n words
RETSP n sp← sp+n× Bpw;

lr← sp[0]
contract the stack by n words then branch to saved lr

B.4. Resources

A resource can be a thread, synchroniser, channel end or lock. Resource types are speciVed with an
immediate value. A resource identiVer is a 32-bit word in which the top 16 bits are the core identiVer (0
for a synchroniser), the next 8 bits are the resource identiVer and the bottom 8 bits are the resource
type.

core ID resource ID resource type

31 16 8 0

Resource type values are denoted by the constants THREAD, SYNC, CHANEND, and LOCK.
For channel end IDs, this allows them to be uniquely identiVed within a system and used as an end

point by any other core, or indeed a thread on the same core.

GETR d, u allocate a resource of type u and set d to its ID, otherwise set d to 0
FREER r deallocate a resource with ID r

GETR allocates resources from a pool and returns the next available resource with the lowest ID value,
otherwise it returns 0.

266

B.5. Communication

B.5. Communication

Channel ends are allocated and deallocated using GETR and FREER. Each channel end has a destination
register d that is set to the ID of the receiving channel end. This must be set by a thread before data is
sent, but it is not necessary for data to be received. This provides the ability for a number of threads
to send messages to a single channel end.

SETD r, s set the destination of channel end r to the channel end ID s
OUT r, s output word s to the channel end r
OUTCT r, s output a control token s to the channel end r
IN d, r input a word from r to d if r is a channel end
CHKCT r, s if next token is the control token s discard it, otherwise raise an exception

The interconnect is wormhole switched such that when a message is output on a channel, it
establishes a route through the network (if it is not already open) so that subsequent messages can
travel without any setup overheads. A special 8-bit control token END is used to close a route, allowing
transfers of data to be packetised or streamed. Other control tokens can be used to control network
resources and encode communication protocols.
However, this Wexibility requires routes to be opened and closed in such a way that they cannot

cause deadlock by holding network resources. One way to do this is with synchronised communication
to ensure receivers are always ready to receive a message before it is send. A synchronisation between
two parties, a and b, can be implemented with the sequence

thread a thread b

OUTCT c, END → CHKCT c, END
CHKCT c, END ← OUTCT c, END

Then, this synchronisation can be used to ensure the destination received a message before anything
else is sent:

thread a thread b

OUT c, v → IN c, v
OUTCT c, END → CHKCT c, END
CHKCT c, END ← OUTCT c, END

And, if the sender does not know whether the destination is ready to receive a message, a synchroni-
sation can be also be applied beforehand:

thread a thread b

OUTCT c, END → CHKCT c, END
CHKCT c, END ← OUTCT c, END
OUT c, v → IN c, v

OUTCT c, END → CHKCT c, END
CHKCT c, END ← OUTCT c, END

B.6. Events and interrupts

Channel ends can be conVgured to trigger events or interrupts on receipt of a message. An event
causes control to be transferred from a waiting thread to the channel’s event vector and for an event
data register to be set to the channel’s environment vector, which is used to store speciVc data for the
handler. Interrupts, in contrast, are unexpected events that cause the same transfer of control and
access to the environment vector, but additionally, the pc, sr and ed registers are saved.

267

Appendix B. An overview of the XS1 architecture

SETSR u sr←sr∨u set the status register
GETSR d ,u sr←sr∧u set the status register
SETV r, s set event vector to s on channel end r
SETEV r, s set event environment to s on channel end r
SETC r, s set the control register to s of channel end r
EE r enable events on channel end r
ED r disable events on channel end r
WAITE wait for an event
CLRE disable the generation of any events by the current thread

Status register bits corresponding to events and interrupts are set with the constants EVENT_ENABLE
and INTR_ENABLE, and the control register bits are set with the constants MODE_EVENT and MODE_INTR.

B.7. Threading

The following instructions support the allocation, initialisation, synchronisation and termination of
local threads.

GETID d get the resource ID of the executing thread
GETST d, r get a thread, bind it to a synchroniser r and set d to the thread ID.
TSETR* d, s, t set register d of thread t to s
MSYNC r master synchronise on synchroniser r
SSYNC r slave synchronise on synchroniser r
MJOIN r master synchronise on synchroniser r and free slave threads
FREET stop the executing asynchronous thread and free it

Collections of threads can be synchronised or they can operate asynchronously. A master thread
can allocate one or more synchronised slave threads with GETST, binding them to a synchroniser
(itself allocated and deallocated with GETR and FREER). This allows the master and slaves to barrier
synchronise with MSYNC and SSYNC. When the master executes an MJOIN, the slaves are terminated
and deallocated. The master can use TSETR to perform initialisation by directly setting slave registers.

Asynchronous threads are allocated and deallocated with GETR and FREER and are responsible for
their own termination with FREET.

B.8. Locks

Locks are allocated and deallocated using GETR and FREER, and are claimed and released using input
and output instructions.

OUT r release the lock r
IN r claim the lock r

268

	Abstract
	Acknowledgements
	Author's declaration
	Contents
	List of Figures
	List of Tables
	List of Processes
	Introduction
	Parallelism in computer architecture
	General-purpose parallel computers
	This thesis

	Background
	Parallel computation
	Parallelism and communication
	Models
	Summary

	Parallel programming, languages and compilation
	Principles
	Criteria for a general-purpose parallel-programming language
	Survey of programming and compilation approaches
	Summary

	General-purpose parallel architecture
	Universal communication networks
	Switching mechanics
	Processing
	A short survey of real machine architectures
	Summary

	The UPA and the sire language
	The Universal Parallel Architecture
	Overview
	Interconnect
	Processing
	Memory
	Packaging

	The sire programming language
	The model of computation
	Notation
	Overview
	Primitive commands
	Structured commands
	Types, names and scope
	Composition
	Servers
	Replication
	Expressions and elements
	Procedural abstraction
	Program
	Discussion

	Sire programming structures
	Process structures
	Server structures
	Discussion

	Compilation of sire to the UPA
	Overview
	Program transformations
	Machine target
	Run-time kernel
	Code generation
	Discussion

	Evaluation of implementation cost and performance
	An implementation model for the UPA
	Overview
	Background
	Implementation model
	Model parameters
	Cost and scaling
	Discussion

	Performance evaluation of the UPA and sire
	Simulation model
	Efficiency of sire primitives
	Emulation of large sequential memories
	Discussion

	Summary and conclusions
	Background
	Contributions
	Conclusions and future work

	References
	Sire syntax
	Collected syntax
	Ordered syntax
	Operators
	Representation of values
	Character set
	Comments
	Keywords

	An overview of the XS1 architecture
	Overview
	Memory access
	Branching and procedure calls
	Resources
	Communication
	Events and interrupts
	Threading
	Locks

