
XMP-64 performance measurements

James Hanlon∗

22 Feburary 2010

1 Introduction

This document presents performance measurements for the XMP-64 device. For each mea-
surement, it describes the method taken and the results obtained. Section 2 starts by introduc-
ing the hypercube interconnection topology, Section 3 describes a technique for global clock
synchronisation and gives timings for barrier synchronisation, and Vnally Section 4 describes
performance and behaviour with synthetic traXc patterns.

2 Topology

The XMP-64 connects together 64 XCore processors in 16 XS1-G4 devices. These are arranged
as a 4-dimensional hypercube using 5b XMOS links on a single PCB. A hypercube is a gener-
alisation of a regular cube structure into an arbitrary number of dimensions. A d-dimensional
hypercube is a special case of a k-ary n-cube (torus network) when k = 2, and has N = 2d

nodes and d2d−1 edges. Each node in the network can be labeled with a d-bit binary identiVer,
and an edge exists between two nodes x and y if and only if their identiVers diUer by exactly
one bit, i.e. for some integer k ≥ 0

x⊕ y = 2k.

Hence, each node has d = logN edges. An edge is called a dimension e edge if it links two
nodes whose identiVers diUer in the eth bit position [2].

Intuitively, a 4-dimensional hypercube can be constructed by joining two cube structures (each
with 8 nodes), by adding edges between corresponding vertexes. Figure 1 illustrates this.
Incidentally, a 4-ary 2-cube is equivalent to a 4-dimensional hypercube, and this Wat structure
is used to package the hypercube network between the 16 chips in the XMP-64. As each chip
contains 4 cores, it is convenient to view the network as a hypercube with 6 dimensions.

∗This work is licensed under the Creative Commons Attribution 4.0 International License. http://
creativecommons.org/licenses/by/4.0/

1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


0000

0001

0010

0011

0100

0101 0111

0110

1000

1001

1010

1011

1100

1101 1111

1110

(a)

1010 1000 0010 0000

1011 1001 0011 0001

1110 1100 0110 0100

1111 1101 0111 0101

(b)

Figure 1: Representations of a 4-dimensional hypercube. (a) shows an intuitive construction and (b)
shows an equivalent 4-ary 2-cube, or torus network, which is used to package the hypercube
on the XMP-64 board.

Processes

Phase 1 Phase 2

Ba
rrie

r

Ba
rrie

r

Figure 2: Operation of a barrier. Some processes may complete a phase more quickly than others, but
the barrier ensures that all processes enter the next phase synchronously.

3 Synchronisation

Some programming techniques for parallel computers rely on eXcient synchronisation be-
tween some or all of the processes, so that they may operate in unison. Synchronisation may
be needed to detect termination, or to ensure that all running processes have completed up-
dates to a global state before proceeding to the next stage of a computation.

Barrier synchronisation is a key operation in many parallel algorithms. It is used to ensure that
a set of processes enter a new phase of computation at the same time. Any global communica-
tion such as a reduction (an operation such as a sum or multiply performed over all elements
of a distributed data set) or scatter (to distribute data from one process to many processes)
may imply the use of a barrier. Figure 2 illustrates the operation of a barrier. Processes may
enter a barrier at any time, but may leave only once all other processes have entered.

Clock synchronisation is another form of synchronisation, necessary when each node in a dis-
tributed system has access to its own clock, but no guarantees can be made of the agreement
with the clocks kept by other nodes. Synchronisation can be performed globally so that there is
a consensus on a single time in the network. Clock synchronisation is key to making accurate
measurements for message latencies, barrier synchronisations and traXc patterns.

2



3.1 Barrier synchronisation

With a hypercube network, it is possible to perform a barrier synchronisation in O(logN)
communication steps, where N is the number of nodes in the network. In other network
topologies such as meshes or irregular structures, barrier synchronisation is typically imple-
mented using tree structures which incur a far higher cost.

The barrier synchronisation scheme for a hypercube works by synchronising with neighbour-
ing nodes, in each dimension in turn. To begin, each node exchanges a single message with
its neighbouring node. The Vrst neighbour of node i is i ⊕ 1, the second is i ⊕ 2 and i ⊕ 2d

for dimension d. In the Vrst exchange, all pairs of nodes connected in the Vrst dimension
become synchronised with each other and we have N/2 synchronised pairs. In the second
exchange, nodes connected in second dimension become synchronised with those in the Vrst,
producing N/4 synchronised groups. After d iterations, all nodes become synchronised in a
single group. In this scheme, no node can leave the barrier before all nodes have entered it.
Algorithm 1 gives pseudo-code that each node executes to perform a barrier synchronisation.

Algorithm 1 Barrier synchronisation executed by each nodem in the network.

for i = 1 to d do
Neighbour node n = m⊕ 2i

Send message to n
Receive message from n

end for

This approach of iteratively exchanging messages in each dimension is a general and useful
communication pattern that can be applied to many other problems. These include Vnding
minimum and maximum values over the set of nodes and to calculate the average of the values
held by each node. In particular though, global clock synchronisation can also be achieved in
this way.

3.2 Global clock synchronisation

The aim of clock synchronisation is for each node to learn an oUset value to some reference
clock in the network. This could be the average clock or that of a speciVc node.

Synchronisation of clocks to a speciVc node for a hypercube works in the same way as the
barrier. Let cn denote the clock of node n. Initially, all pairs of nodes connected in the Vrst di-
mension exchange messages to determine the oUsets between their clocks. If synchronisation
is based on c0, then a adjustments are applied in each exchange to the node with the largest
identiVer value. If it is based on cN−1, then adjustments are applied to the lowest.

Using a similar inductive argument as the one used in Section 3.1, we can show this will
approach will result in global synchronisation. After the Vrst exchange, each pair of nodes
are synchronised and conceptually the network contains N/2 diUerent clocks. In the second

3



phase, nodes exchange in the second dimension, but include the oUset they learned in the Vrst,
leaving N/4 diUerent clocks. This continues until all nodes have learned their oUset from the
reference clock.

Pseudo-code for this process is given in algorithmAlgorithm 2. The functions clkSyncMaster()
and clkSyncSlave() perform communication between neighbours in a particular dimension to
determine the diUerence ∆, between the two clocks such that

∆ = cnu − cnv .

Algorithm 2 Clock synchronisation pseudo-code for nodem.

offset← 0
for i = 1 to d do

Neighbour node n = n⊕ 2i

ifm > n then
∆← clkSyncMaster()
offset← offset+ ∆

else
clkSyncSlave()

end if
end for

3.2.1 Determining the clock offset between two cores

Accurately determining the value of ∆ is key to the Vnal synchronisation between nodes. This
can be performed with two ping-pong exchanges between the master and slave processes. The
master learns from this two time values t0 and t2 recorded by the slave, and t1, recorded itself
in the middle. The exchange is initialised by the slave node which sends a message to the
master. When the master receives this, it replies. On receiving this, the slave measures its
time (t0) and send this back to the master. When the master receives it, it measures its own
time (t1), then pings the slave again for another clock measurement (t2) which is measured
and sent back in the same way. Figure 3 illustrates this exchange.

Using these values of t0, t1 and t2, the following equations can then be setup, where h is a
single hop time and ε is an error term.

t1 − t0 = ∆ + h+ ε (1)

t2 − t1 = −∆ + h+ ε (2)

Subtracting 2 from 1 we can then obtain the value of ∆:

∆ = t1 − t0/2− t2/2.

4



Master

Slave

t1t0 t2

Hop time (h)

Figure 3: A diagram illustrating the exchanges made between the master and slave nodes to obtain the
values t0, t1 and t2.

To reduce to a minimum any error in measurement, it is important for these measurement
operations to minimise the number of instructions and ensure the exchanges are symmetric.
As a result, the functions clkSyncMaster() and clkSyncSlave() were implemented directly in
assembly.

3.2.2 Reducing Error in ∆

In practice, the true value of ∆ cannot always be learned, and instead the calculation may
yield ∆ + ε, where ε is some small error value. This could be caused by non-determinism at
the hardware level. We know that the calculation of ∆ in a given dimension d′ should be the
same for all of the nodes that have already synchronised in the previous dimensions, of which
there will be 2d

′−1.

Using this invariant, we can reduce the eUect of this error as we propagate an oUset through
the cube by averaging over previous dimensions. Each node m computes its ∆m oUset as the
average over the other ∆s calculated in previous dimensions 0, . . . , d′ − 1:

∆m(d′) =
1

2d′−1

∑
n∈A(n,d′)

∆n

where
A(m, d) =

{
n | n = m⊕ 2i for 0 ≤ i < d

}
is the set of neighbouring nodes ofm in dimensions 0, . . . , d−1. The calculation of the average
at each node can be completed in log(2d−1) = d− 1 steps using the same dimension-ordered
exchange procedure.

5



Core-to-core journey Time (ns)
On-chip 70
OU-chip (1 hop) 200
OU-chip (2 hops) 290
OU-chip (3 hops) 390
OU-chip (4 hops) 480

Table 1: Timings of core-to-core journeys, both on and oU-chip. Note 4 is the diameter of the hyper-
cube; the maximum distance between any two nodes.

3.3 Timing a barrier synchronisation

3.3.1 Estimated time

A simple estimate of the time for a barrier synchronisation to complete can be made by con-
sidering the single-hop times between cores. Since we can view the XMP-64 network as a
6-dimensional hypercube, where the Vrst two dimensions are contained in-chip, the single
hop time in-chip hin and oU-chip hoff form this estimate. The time to run a barrier synchro-
nisation (the operation given in Algorithm 1) is then 2hin + 4hoff . These times are simple
to measure and are presented in table 1. Using them, an estimate of 940ns for the barrier to
complete can be made.

3.3.2 Measured time

To make a precise measurement of the time taken for a barrier to complete, where all nodes
minimise their time in the barrier, i.e. that they enter at precisely the same point in time (an
assumption made by the estimate), it is necessary to use globally synchronise clocks.

If nodes enter the barrier unsynchronised, somewill enter before others, completing exchanges
in as many dimensions as they can but not completing until all have entered. For those nodes
entering late, they will complete much faster then normal as messages will be waiting for them
in one or more dimensions. In one extreme, nodes n1 to n63 enter the barrier early, followed
much later by n0. In this case, it takes n0 just 280ns to complete the barrier synchronisation.

For nodes to enter the barrier simultaneously, they must synchronise their clocks against, for
instance, node n0 to obtain an oUset to cn0 and enter at a time in the future speciVed by n0
adjusted by the oUset to cn0 . If the synchronisation is perfect, then each node should spend
exactly the same amount of time in the barrier.

Using the above method, the elapsed time through the barrier was recorded for each node.
The results varied by a range of around 150ns each run, with minimum and maximum times
of approximately 930ns and 1100ns respectively, but with a consistent average of 990ns, which
is in-line with the estimate made by considering single hop times.

6



Although the measurement error in the ∆ term was reduced by averaging over synchronised
nodes, it still eUects the synchronisation, evident in the resulting times through the barrier.
To ensure this error was not systematic in the program code, the precise clock oUsets were
inspected by analysing signal output from pins on the board. This revealed that oUsets after
synchronisation between nodes n1 to n63 and n0 varied between runs and hence could not be
caused by some bias in the measurement for example.

4 Traffic patterns

In order to evaluate the performance of interconnection networks, synthetic workloads can
be generated. These are a simpliVcation of real execution workloads, but they capture the
important spatial and temporal elements of them. With the XMP-64, we are interested in the
temporal characteristics of diUerent traXc patterns and the congestion that they induce over
the network.

4.1 Permutation patterns

Synthetic traXc patterns are commonly considered as a permutation π, which provides a one-
to-one mapping from source addresses s to destination addresses d:

d = π(s).

Because permutation traXc concentrates load on individual source-destination pairs, they pro-
vide good stress-testing [1].

Bit permutations calculate each bit of the destination address di as a function of one bit of the
source address si such that

di = sf(i)⊕g(i).

The following bit permutations were used to evaluate performance. In all cases, b is the num-
ber of bits in the pattern, in the case of hypercube identiVers b = d.

• ShuYe. A Fast Fourier Transform or sorting algorithm will demonstrate communica-
tions characteristic of the shuYe permutation:

di = si−1 mod b.

Equivalently, the identiVer is circularly shifted by 1-bit.

• Transpose. Matrix transpose or corner-turn operations induce the transpose permuta-
tion:

di = si+ b
2

mod b.

This is equivalent to a circular shift of an b-bit identiVer by b/2. The transpose permuta-
tion is a worst case for a hypercube network since it causes all source-destination pairs

7



to be separated by the full diameter of the network, and hence all nodes to be maximally
loaded. For the XMP-64, the transpose relates to a circular shift of two, performed on
the four most signiVcant bits.

• Bit-complement. Each bit is negated:

di = s̄i.

• Bit-reverse. The binary representation is reversed:

di = sb−i−1.

• Random. Random permutations were also used to provide an average-case. These
diUer slightly to random traXc patterns, where each node is equally likely to send to
each destination, possibly resulting in many sources sending to a single destination.

4.2 Method

As we are interested in the spatial locality of the traXc permutations, measurements can be
taken from a single burst of traXc between all source-destination pairs. If this is performed in
unison by all nodes, i.e. they begin sending at the same instance, then maximum congestion
will occur.

To do this it is necessary to perform a global clock synchronisation, so that they can synchro-
nise their entry into the permutation and calculate the latencies of messages sent. Measure-
ments are taken over 10,000 runs of the permutation to ensure values are representative of the
underlying process.

Wewill look at two important elements of the traXc patterns: distribution of message latencies
and average latencies. To look at the latency distribution, each node records the latency of each
message in a set of frequency bins. To determine the bin ranges, the traXc pattern is simulated
for a number of runs so that all nodes can share a maximum latency value, from which the
bin range is determined. At the end of the experiment, a master node collates the frequency
distributions from all other nodes. To determine average latency, again each node records total
latency and then calculated average latency on completion, passing values back to the master
node for collation into a global average.

For random permutations, each iteration of the experiment is conducted with a new permu-
tation so that the measurements are unbiased towards some particular conVguration. This
is achieved by each node, each iteration, re-shuYing the permutation, achieving pseudo-
randomness using a cyclic redundancy check (CRC) instruction. An initial global seed value is
distributed to all nodes so they generate the same sequence of random numbers. According to
the permutation, channel end destinations are manually conVgured during execution.

With regards to the software implementation, each network node consists of two threads;
one sender and one receiver. This is necessary for message lengths greater that the buUering

8



100

1000

10000

100000

1e+06

1 10 100 1000 10000

A
ve
ra
ge

La
te
nc
y
(n
s)

Message size (KB)

ShuYe
Transpose
Bit-comp
Bit-rev

Random

Figure 4: Log-log plot of average latency as a function of message size for a 64 nodes.

between nodes (16 Bytes). As each dimension of the hypercube is connected by four links,
traXc congestion will be highest when every link is fully utilised. This can be achieved by
running 4 pairs of send and receive processes on each core. Alternatively, the number of
available links between each processor can be altered by modifying the XN mapping Vle.

4.3 Average latency

Figure 4 shows the average latency of messages over all nodes, for varying message lengths.
These results were obtained from all 64 nodes, with each core running a single pair of send and
receive threads. Processors are connected with a single link in each dimension to maximise
congestion. Note that there is very little, or even no penalty for sending short messages.

4.4 Latency Distributions

Figures 5, 6, 7, 8 and 9 show the latency distributions for a message length of 32 bytes, with 64
cores and single wire interconnects.

The latency distribution for the random permutation in Figure 9 clearly shows distributions
around each of the 1, 2, 3 and 4 node hops. The distributions are asymmetric because a hop
must always take at least some period of time, but a message can be delayed in a network for
any amount of time.

9



0
10000
20000
30000
40000
50000
60000
70000
80000

0 130

260

390

520

650

780

910

1040

1170

C
ou

nt

Message latency (ns)

Figure 5: Latency distribution for a shuYe permutation

0
20000
40000
60000
80000
100000
120000
140000
160000

0 130

260

390

520

650

780

910

1040

1170

C
ou

nt

Message latency (ns)

Figure 6: Latency distribution for a transpose permutation

10



0

5000

10000

15000

20000

0 130

260

390

520

650

780

910

1040

1170

C
ou

nt

Message latency (ns)

Figure 7: Latency distribution for a bit-complement permutation

0
20000
40000
60000
80000
100000
120000
140000
160000

0 130

260

390

520

650

780

910

1040

1170

C
ou

nt

Message latency (ns)

Figure 8: Latency distribution for a bit-reverse permutation

11



0
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

0 130

260

390

520

650

780

910

1040

1170

C
ou

nt

Message latency (ns)

Figure 9: Latency distribution for random permutations

References

[1] W. J Dally, B. Towles Principles and practices of interconnection networksMorgan KauUman
Pub, 2004

[2] F. T. Leighton, Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hyper-
cubesMorgan KauUman Pub, 1992

12


	Introduction
	Topology
	Synchronisation 
	Barrier synchronisation 
	Global clock synchronisation
	Determining the clock offset between two cores
	Reducing Error in 

	Timing a barrier synchronisation
	Estimated time
	Measured time


	Traffic patterns 
	Permutation patterns
	Method
	Average latency
	Latency Distributions


